Main Article Content

Abstract

Minyak bumi sebagai sumber energi semakin berkurang dan semakin mahal. Salah satu sumber energi hijau yang ramah lingkungan dan berkelanjutan adalah biodiesel dari minyak nyamplung. Tujuan penelitian ini adalau untuk mengobservasi aktivitas katalis ZnO, CaO berpendukung MCM-48 yang teraktivasi dengan CTAB dan NaCl di dalam reaksi esterifikasi minyak nyamplung menjadi biodiesel. Kondisi reaksi yang diterapkan yaitu, suhu 60 °C, selama 1 jam, 2% (b/b) katalis, dan 1:9 (b/b) minyak banding metanol. Sintesis katalis dilakukan menggunakan metode hidrotermal pada suhu 100 °C selama 48 jam dan dikalsinasi dengan suhu 550, 650, dan 750 °C. Karakterisasi katalis menggunakan metode FTIR dan XRD. Aktivitas katalis di dalam reaksi esterifikasi diidentifikasi menggunakan metode titrasi asam-basa. Data FTIR menunjukan adanya serapan CH alifatik, Si-OH, Si-O-M (M. Si, Zn, Ca). Difraktogram sinar X katalis menunjukan adanya puncak pada daerah 2θ 2-3o (dua puncak) dan beberapa puncak pada daerah 2θ 4-5o yang merupakan ciri MCM-48. Rendemen reaksi yang diperoleh sebesar 62,55% dan 81,21% untuk katalis ZMZ/NaCl/650 dan ZMZ/NaCl/750. Persen aktivitas berturut-turut untuk kedua katalis tersebut lebih tinggi 1,83% dan 0,23% daripada katalis H2SO4. Kedua katalis ini mempunyai potensi sebagai kandidat pengganti katalis konvensional (H2SO4) yang tidak ramah lingkungan dan sering digunakan sebagai katalis di dalam reaksi esterifikasi pada bahan baku biodiesel yang memiliki kadar FFA lebih dari 20% seperti minyak nyamplung.

Keywords

Biodiesel CTAB Katalis heterogen bifungsional Minyak nyamplung (Calophyllum inophyllum) NaCl

Article Details

References

  1. Abdullah, N. H., Hasan, S. H., & Yusoff, N. R. M. (2013). Biodiesel Production Based on Waste Cooking Oil (WCO). International Journal of Materials Science and Engineering, pp. 94-99. https://api.semanticscholar.org/CorpusID:53623801
  2. Adepoju, T. F. (2021). Synthesis of biodiesel from Annona muricata – Calophyllum inophyllum oil blends using calcined waste wood ash as a heterogeneous base catalyst. MethodsX, 8, pp. 101188. https://www.sciencedirect.com/science/article/pii/S2215016120304088
  3. Al-Saadi, A., Mathan, B., & He, Y. (2020). Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renewable Energy, 158, pp. 388-399. https://www.sciencedirect.com/science/article/pii/S0960148120308764
  4. Al-Sakkari, E. G., Abdeldayem, O. M., El-Sheltawy, S. T., Abadir, M. F., Soliman, A., Rene, E. R., & Ismail, I. (2020). Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study. Fuel, 279, pp. 118519. https://www.sciencedirect.com/science/article/pii/S0016236120315155
  5. Alfawaz, A., Alsalme, A., Alkathiri, A., & Alswieleh, A. (2022). Surface functionalization of mesoporous silica nanoparticles with brønsted acids as a catalyst for esterificatsion reaction. Journal of King Saud University - Science, 34(5), pp. 102106. https://www.sciencedirect.com/science/article/pii/S1018364722002877
  6. Arif, P. (2013). Eksplorasi Nyamplung (Calophyllum inophyllum L.) Di Sebaran Alam Kalimantan Barat (Ketapang) Untuk Program Pemuliaan Pohon. Informasi Teknis, 11(2), pp. 69-78. https://adoc.pub/arif-priyanto-i-pendahuluan.html
  7. Arumugam, A., & Ponnusami, V. (2019). Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renewable Energy, 131, pp. 459-471. http://www.sciencedirect.com/science/article/pii/S0960148118308565
  8. Arumugam, A., Senthamizhan, S. G., Ponnusami, V., & Sudalai, S. (2018). Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Int J Biol Macromol, 112, pp. 598-607. https://www.ncbi.nlm.nih.gov/pubmed/29408394
  9. Borcănescu, S., Popa, A., Verdeș, O., & Suba, M. (2023). Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO2 Capture. International Journal of Molecular Sciences, 24(12). https://www.mdpi.com/1422-0067/24/12/10345
  10. Cleveland, J. W., Kumar, D. R., Cho, J., Jang, S. S., & Jones, C. W. (2021). Creation of discrete active site domains via mesoporous silica poly(styrene) composite materials for incompatible acid–base cascade reactions [10.1039/D0CY01988G]. Catalysis Science & Technology, 11(4), pp. 1311-1322. http://dx.doi.org/10.1039/D0CY01988G
  11. Dai, Y. M., Li, Y. Y., Jia Hao, L., Chen, B. Y., & Chen, C. C. (2021). One-pot synthesis of acid-base bifunctional catalysts for biodiesel production. J Environ Manage, 299, pp. 113592. https://www.ncbi.nlm.nih.gov/pubmed/34479149
  12. Ding, Y., Zhao, C., Lia, Y., Ma, Z., & Lv, X. (2018). Effect of Calcination Temperature on the Structure and Catalytic Performance of the Cu-MCM-41 Catalysts for the Synthesis of Dimethyl Carbonate. Química Nova, 41(10), pp. 1156-1161. https://www.scielo.br/j/qn/a/6ccX8c9yVvsXdgHHQq548Ry/?lang=en&format=pdf
  13. Dixon, D. J. (2016). Bifunctional catalysis. Beilstein J Org Chem, 12, pp. 1079-1080. https://www.ncbi.nlm.nih.gov/pubmed/27340494
  14. Ellerbrock, R., Stein, M., & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12(1), pp. 11708. https://doi.org/10.1038/s41598-022-15882-4
  15. Encinar, J. M., Nogales-Delgado, S., & Sánchez, N. (2021). Pre-esterification of high acidity animal fats to produce biodiesel: A kinetic study. Arabian Journal of Chemistry, 14(4). https://www.sciencedirect.com/science/article/pii/S1878535221000630
  16. Gardy, J., Rehan, M., Hassanpour, A., Lai, X., & Nizami, A. S. (2019). Advances in nano-catalysts based biodiesel production from non-food feedstocks. J Environ Manage, 249, pp. 109316. https://www.ncbi.nlm.nih.gov/pubmed/31472308
  17. Güçbilmez, Y., Yavuz, Y., Çalış, İ., Yargıç, A., & Koparal, A. S. (2023). Low temperature synthesis of MCM-48 and its adsorbent capacity for the removal of basic red 29 dye from model solutions. Heliyon, 9(5), pp. e15659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172900/pdf/main.pdf
  18. Han, F., Hu, F., Zhao, X., Liu, M., Yang, P., & Niu, G. (2024). Study on the effect of electrolyte on surface tension of surfactant solution and wettability of coal dust. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682, pp. 132929. https://www.sciencedirect.com/science/article/pii/S0927775723020137
  19. Hayyan, A., Yeow, A. T. H., Alkahli, N. A. M., Saleh, J., Aldeehani, A. K., Alkandari, K. H., Alajmi, F. D. H., Alias, Y., Junaidi, M. U. M., Hashim, M. A., Basirun, W. J., & Abdelrahman, M. A. A. (2022). Application of acidic ionic liquids for the treatment of acidic low grade palm oil for biodiesel production. Journal of Ionic Liquids, 2(1). https://www.sciencedirect.com/science/article/pii/S2772422022000076?via%3Dihub
  20. Hsiao, M.-C., Kuo, J.-Y., Hsieh, S.-A., Hsieh, P.-H., & Hou, S.-S. (2020). Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel, 266. https://www.sciencedirect.com/science/article/pii/S0016236120301095
  21. Jun, S., Kim, J. M., Ryoo, R., Ahn, Y.-S., & Han, M.-H. (2000). Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Microporous and Mesoporous Materials, 41(1), pp. 119-127. https://www.sciencedirect.com/science/article/pii/S1387181100002791
  22. Kim, J. Y., & Yeom, S. H. (2020). Optimization of Biodiesel Production from Waste Coffee Grounds by Simultaneous Lipid Extraction and Transesterification. Biotechnology and Bioprocess Engineering, 25(2), pp. 320-326. https://doi.org/10.1007/s12257-019-0353-6
  23. Kolo, L., Firdaus, & Taba, P. (2015). The use of MCM-48-nCaO as catalyst in esterification reaction of nyamplung seed oil (Calophyllum inophyllum L.). Indonesia Chimica Acta, 8(20), pp. 1-10. https://indonesiachimicaacta.files.wordpress.com/2012/05/1-la-kolo.pdf
  24. Kolo, L., Firdaus, Taba, P., Zakir, M., & Soekamto, N. H. (2022). Selectivity of the New Catalyst ZnO-MCM-48-CaO in Esterification of Calophyllum inophyllum Oil. Automotive Experiences, 5(2),pp. 217-229. https://journal.unimma.ac.id/index.php/AutomotiveExperiences/article/view/6711/3247
  25. Kolo, L., La Kalamu, L. Y., Soekamto, N. H., Taba, P., Fauziah, S., Maming, M., & Zakir, M. (2024). Optimization of the MCM-48 Synthesis Method as a Catalyst in the Esterification of Nyamplung Seed Oil into Biodiesel. Automotive Experiences, 7(1), pp. 161-170. https://journal.unimma.ac.id/index.php/AutomotiveExperiences/article/view/10570/5001
  26. Kolo, L., Soekamto, N., Firdaus, & Taba, P. (2023). Synthesis of MCM-48 contains NaCl and Surfactant as Catalyst in the Esterification of Nyamplung Oil (Calophyllum inophyllum L.) to Biodiesel. Egyptian Journal of Chemistry, 66(1),pp. 431 - 437. Retrieved Januari, from https://ejchem.journals.ekb.eg/article_236561.html
  27. Krishnan, S. G., Pua, F.-l., & Zhang, F. (2022). Oil palm empty fruit bunch derived microcrystalline cellulose supported magnetic acid catalyst for esterification reaction: An optimization study. Energy Conversion and Management: X, 13, pp. 100159. https://www.sciencedirect.com/science/article/pii/S2590174521000842
  28. Kurji, B. M., & Abbas, A. S. (2023). MCM-48 from rice husk ash as a novel heterogeneous catalyst for esterification of glycerol with oleic acid: Catalyst preparation, characterization, and activity. Case Studies in Chemical and Environmental Engineering, 8. https://doi.org/10.1016/j.cscee.2023.100382
  29. Lani, N. S., Ngadi, N., & Inuwa, I. M. (2020). New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production. Renewable Energy, 156, pp. 1266-1277. http://www.sciencedirect.com/science/article/pii/S0960148119316295
  30. Li, H., Wang, S., Li, R., Zhang, Y., & Wang, H. (2023). Preparation of Sulfhydryl Functionalized MCM-48 and Its Adsorption Performance for Cr(VI) in Water. Water, 15(524),pp. 1-19. https://www.mdpi.com/2073-4441/15/3/524
  31. Maddalena, R., Hall, C., & Hamilton, A. (2019). Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochimica Acta, 672, pp. 142-149. https://www.sciencedirect.com/science/article/pii/S0040603118307329
  32. Mansir, N., Teo, S. H., Mijan, N.-A., & Taufiq-Yap, Y. H. (2021). Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catalysis Communications, 149, pp. 106201. https://www.sciencedirect.com/science/article/pii/S1566736720302776
  33. Manurung, R., Parinduri, S. Z. D. M., Hasibuan, R., Tarigan, B. H., & Siregar, A. G. A. (2023). Synthesis of nano-CaO catalyst with SiO2 matrix based on palm shell ash as catalyst support for one cycle developed in the palm biodiesel process. Case Studies in Chemical and Environmental Engineering, 7, pp. 100345. https://www.sciencedirect.com/science/article/pii/S2666016423000506
  34. Medeiros Vicentini-Polette, C., Rodolfo Ramos, P., Bernardo Goncalves, C., & Lopes De Oliveira, A. (2021). Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem X, 12, pp. 100166. https://www.ncbi.nlm.nih.gov/pubmed/34825173
  35. Mokri, N. A., Pei Ching, O., Mukhtar, H., & Thiam Leng, C. (2019). Tailoring Particle Size and Agglomeration State of Mesoporous MCM-48 via Optimisation of Sol-gel Silica Process. Journal of Physical Science, 30(1), pp. 145-168. https://jps.usm.my/mesoporous-mcm-48/
  36. Navas, M. B., Ruggera, J. F., Lick, I. D., & Casella, M. L. (2020). A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Bioresources and Bioprocessing, 7(1).
  37. Nguyen, N. T., & Nguyen, V. A. (2020). Synthesis, Characterization, and Photocatalytic Activity of ZnO Nanomaterials Prepared by a Green, Nonchemical Route. Journal of Nanomaterials, 2020, pp. 1-8. https://onlinelibrary.wiley.com/doi/10.1155/2020/1768371
  38. Onukwuli, D. O., Emembolu, L. N., Ude, C. N., Aliozo, S. O., & Menkiti, M. C. (2017). Optimization of biodiesel production from refined cotton seed oil and its characterization. Egyptian Journal of Petroleum, 26(1), pp. 103-110. https://www.sciencedirect.com/science/article/pii/S1110062115301240
  39. Pirouzmand, M., Anakhatoon, M. M., & Ghasemi, Z. (2018). One-step biodiesel production from waste cooking oils over metal incorporated MCM-41; positive effect of template. Fuel, 216, pp. 296-300. https://www.sciencedirect.com/science/article/pii/S0016236117315466
  40. Punvichai, T., Patisuwan, S., & Pongkanpai, V. (2021). Two-step Biodiesel Production from Used Activated Bleaching Earth at Palm Oil Refining Plant. 11(1), pp. 7973 - 7980. https://biointerfaceresearch.com/wp-content/uploads/2020/07/20695837111.79737980.pdf
  41. Qiu, S., Zhou, H., Shen, Z., Hao, L., Chen, H., & Zhou, X. (2020). Synthesis, characterization, and comparison of antibacterial effects and elucidating the mechanism of ZnO, CuO and CuZnO nanoparticles supported on mesoporous silica SBA-3. RSC Adv, 10(5), pp. 2767-2785. https://www.ncbi.nlm.nih.gov/pubmed/35496109
  42. Rajendran, N., Gurunathan, B., & I, A. E. S. (2021). Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products, 162, pp. 113273. https://www.sciencedirect.com/science/article/pii/S0926669021000376
  43. Ramos, M., Dias, A. P., Puna, J. F., Gomes, J., & Bordado, J. C. (2019). Biodiesel Production Processes and Sustainable Raw Materials. Energies, 12(23), pp. 1-30. https://www.mdpi.com/1996-1073/12/23/4408
  44. Ranjithkumar, M., Karuppusamy, S., Lakshmanan, P., Ragulnath, D., saravanan, K., & Rameshbabu, A. M. (2021). Study on diesel engine combustion parameters using Calophyllum Inophyllum methyl ester and micro algae methyl ester with level addition of Di-Ethyl ether. Materials Today: Proceedings, 37, pp. 3388-3392. https://www.sciencedirect.com/science/article/pii/S2214785320369820
  45. Sadia, N., Muhammad, N., Liaqat Ali, Q., Muhammad Shahbaz, A., Ali, S., & Syed Danial, A. (2018). Review of Catalytic Transesterification Methods for Biodiesel Production. In B. Krzysztof (Ed.), Biofuels (pp. Ch. 6). IntechOpen. https://doi.org/10.5772/intechopen.75534
  46. Sahoo, P. K., Das, L. M., Babu, M. K. G., & Naik, S. N. (2007). Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86(3), pp. 448-454. https://www.sciencedirect.com/science/article/pii/S0016236106003024
  47. Sharma, S., Saxena, V., Baranwal, A., Chandra, P., & Pandey, L. M. (2018). Engineered nanoporous materials mediated heterogeneous catalysts and their implications in biodiesel production. Materials Science for Energy Technologies, 1(1), pp. 11-21. https://www.sciencedirect.com/science/article/pii/S2589299118300156
  48. Simbi, I., Aigbe, U. O., Oyekola, O., & Osibote, O. A. (2022). Optimization of biodiesel produced from waste sunflower cooking oil over bi-functional catalyst. Results in Engineering, 13, pp. 100374. https://www.sciencedirect.com/science/article/pii/S2590123022000445
  49. Taba, P., Budi, P., Gau, A., Hala, Y., Fauziah, S., Sutapa, I. W., & Manga, J. (2021a). Mesoporous silica modified with amino group (NH2-MCM-48) as adsorbent of Ag(I) and Cr(III) in water. Rasayan Journal of Chemistry, 14, pp. 204-211. https://rasayanjournal.co.in/admin/php/upload/3057_pdf.pdf
  50. Taba, P., Jannah, M., & Hala, Y. (2021b). Mesoporous Silica MCM-48 As Chloramphenicol Adsorbent. Indonesian Journal of Chemical Research, 8, pp. 242-246. https://ojs3.unpatti.ac.id/index.php/ijcr/article/view/2992
  51. Tella, J. O., Adekoya, J. A., & Ajanaku, K. O. (2022). Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: a review. R Soc Open Sci, 9(6), pp. 220013. https://www.ncbi.nlm.nih.gov/pubmed/35706676
  52. Thul, M., Pantawane, A., Lin, W., Lin, Y.-J., Su, P.-F., Tseng, S.-A., Wu, H.-R., Ho, W.-Y., & Luo, S.-Y. (2021). Tunable aryl imidazolium ionic liquids (TAIILs) as environmentally benign catalysts for the esterification of fatty acids to biodiesel fuel. Catalysis Communications, 149. https://www.sciencedirect.com/science/article/pii/S1566736720303198
  53. Vrålstad, T., Øye, G., Stöcker, M., & Sjöblom, J. (2007). Synthesis of comparable Co-MCM-48 and Co-MCM-41 materials containing high cobalt contents. Microporous and Mesoporous Materials, 104, pp. 10-17. https://www.sciencedirect.com/science/article/abs/pii/S1387181106002125
  54. Wang, J., Zhang, C., Bai, Y., Li, Q., & Yang, X. (2021a). Synthesis of mesoporous silica with ionic liquid surfactant as template. Materials Letters, 291, pp. 129556. https://www.sciencedirect.com/science/article/pii/S0167577X21002524
  55. Wang, Y.-T., Cong, W.-J., Zeng, Y.-N., Zhang, Y.-Q., Liang, J.-L., Li, J.-G., Jiang, L.-Q., & Fang, Z. (2021b). Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust. Renewable Energy, 175, pp. 1001-1011. https://www.sciencedirect.com/science/article/pii/S0960148121006893
  56. Xu, J., Chu, W., & Luo, S. (2006). Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. Journal of Molecular Catalysis A: Chemical, 256(1-2), pp. 48-56. https://www.sciencedirect.com/science/article/abs/pii/S1381116906007230
  57. Yarinsa, A. A.-z., Setiawan, P. A. W., & Wahyudi, B. (2024). Peningkatan produksi bioetanol dari fermentasi buah sukun dengan metode Fed-Batch menggunakan bakteri Zymomonas Mobilis. Inovasi Teknik Kimia, 9(2), pp. 114-121. https://publikasiilmiah.unwahas.ac.id/inteka/article/view/9280
  58. Yenika, I. F., Sefentry, A., & Fatimura, M. (2024). Sintesis biodiesel menggunakan minyak jelantah dengan mengkudu (Morinda citrifolia) sebagai adsorben serta variasi katalis NaOH dan waktu transesterifikasi. Inovasi Teknik Kimia, 9(1), pp. 37-43. https://publikasiilmiah.unwahas.ac.id/inteka/article/view/9047
  59. Yuan, D.-J., Yang, J., Hengne, A. M., Lin, Y.-T., Mou, C.-Y., & Huang, K.-W. (2019). Mesoporous silica-supported V-substituted heteropoly acid for efficient selective conversion of glycerol to formic acid. Journal of Saudi Chemical Society. http://www.sciencedirect.com/science/article/pii/S1319610319300924
  60. Zhokh, A. (2023). Diffusion of methane in mesoporous silica. Powder Technology, 417, pp. 118244. https://www.sciencedirect.com/science/article/pii/S0032591023000281