Main Article Content
Abstract
Red mud merupakan limbah padat hasil samping industri pengolahan bauksit melalui proses Bayer yang mengandung besi dalam jumlah tinggi, namun bercampur dengan berbagai oksida logam. Penelitian ini bertujuan untuk meningkatkan kandungan besi dalam red mud melalui metode acid leaching menggunakan larutan asam fluorida (HF). Proses leaching dilakukan dalam sistem refluks dengan variasi waktu (1–4 jam) dan konsentrasi asam (12–48%), kemudian residu dianalisis menggunakan X-Ray Fluorescence (XRF) untuk mengetahui perubahan komposisi. Hasil penelitian menunjukkan bahwa peningkatan waktu dan konsentrasi larutan asam mampu memperkaya kandungan Fe₂O₃ dalam residu, dengan nilai maksimum sebesar 45,91% pada kondisi 48% HF dan waktu leaching 4 jam.
Keywords
Article Details
References
- Bento, N. I., Santos, P. S., de Souza, T. E., Oliveira, L. C., & de Castro, C. S. (2016). Composites based on PET and red mud residues as catalyst for organic removal from water. Journal of Hazardous Materials, 314, 304–311. https://doi.org/10.1016/j.jhazmat.2016.04.066
- Carneiro, J., Tobaldi, D., Capela, M., Novais, R., Seabra, M., & Labrincha, J. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378. https://doi.org/10.1016/j.wasman.2018.09.032
- Debadatta, D., & Pramanik, K. (2013). A study on chemical leaching of iron from red mud using sulphuric acid. Research Journal of Chemistry and Environment, 17(7), 50–56.
- do Prado, N. T., Heitmann, A. P., Mansur, H. S., Mansur, A. A., Oliveira, L. C., & de Castro, C. S. (2017). PET-modified red mud as catalysts for oxidative desulfurization reactions. Journal of Environmental Sciences, 57, 312–320. https://doi.org/10.1016/j.jes.2017.01.011
- Evans, K. (2016). The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy, 2(4), 316–331. https://doi.org/10.1007/s40831-016-0060-x
- Hidayat, A., Roziq, G. K., Muhammad, F., Kurniawan, W., & Hinode, H. (2020). Biodiesel synthesis from used cooking oil using red mud as heterogeneous catalyst. Materials Science Forum, 981, 144–149. https://doi.org/10.4028/www.scientific.net/MSF.991.144
- Jahromi, H., & Agblevor, F. A. (2018). Hydrodeoxygenation of pinyon-juniper catalytic pyrolysis oil using red mud-supported nickel catalysts. Applied Catalysis B: Environmental, 236, 1–12. https://doi.org/10.1016/j.apcatb.2018.05.008
- Karimi, Z., & Rahbar-Kelishami, A. (2023). Efficient utilization of red mud waste via stepwise leaching to obtain α-hematite and mesoporous γ-alumina. Scientific Reports, 13(1), 8527. https://doi.org/10.1038/s41598-023-35753-w
- Karimi, Z., & Rahbar-Kelishami, A. (2024). The study of acid leaching on the mineralogical and microscopic changes of red mud. Mining, Metallurgy & Exploration, 41(2), 1121–1133. 10.1007/s42461-024-00948-w
- Klauber, C., Gräfe, M., & Power, G. (2011). Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy, 108(1–2), 11–32. https://doi.org/10.1016/j.hydromet.2011.02.007
- Kong, H., Zhou, T., Yang, X., Gong, Y., Zhang, M., & Yang, H. (2022). Iron recovery technology of red mud—A review. Energies, 15(10), 3830. https://doi.org/10.3390/en15103830
- Li, B., Zhang, B., Ning, P., He, L., & Zuo, X. (2018). Present status and prospect of red mud resource utilization and safety treatment. Chemical Industry and Engineering Progress, 37(2), 714–722. 10.16085/j.issn.1000-6613.2017-0843
- Lima, M., Thives, L., Haritonovs, V., & Bajars, K. (2017). Red mud application in construction industry: Review of benefits and possibilities. IOP Conference Series: Materials Science and Engineering, 245, https://iopscience.iop.org/article/10.1088/1757-899X/251/1/012033
- Mahinroosta, M., Karimi, Z., & Allahverdi, A. (2020). Recycling of red mud for value-added applications: A comprehensive review. Applied Clay Science, 195, 105735. 10.1016/B978-0-12-803581-8.11474-2
- Pepper, R. A., Couperthwaite, S. J., & Millar, G. J. (2016). Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Minerals Engineering, 99, 8–18. https://doi.org/10.1016/j.mineng.2016.09.012
- Qi, X., Wang, H., Zhang, L., Xu, B., Shi, Q., & Li, F. (2020). Removal of Cr(III) from aqueous solution by using bauxite residue (red mud): Identification of active components and column tests. Chemosphere, 245, 125560. https://doi.org/10.1016/j.chemosphere.2019.125560
- Rukhlyadeva, M., Belousov, M., Nikonenko, E., Ismagilova, G., & Kolesnikova, M. (2015). Production of black iron oxide from red mud. Russian Journal of Applied Chemistry, 88(3), 377–381. 10.1134/S1070427215030027
- Scribot, C., Maherzi, W., Benzerzour, M., Mamindy-Pajany, Y., & Abriak, N.-E. (2018). A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Construction and Building Materials, 163, 21–31. https://doi.org/10.1016/j.conbuildmat.2017.12.092
References
Bento, N. I., Santos, P. S., de Souza, T. E., Oliveira, L. C., & de Castro, C. S. (2016). Composites based on PET and red mud residues as catalyst for organic removal from water. Journal of Hazardous Materials, 314, 304–311. https://doi.org/10.1016/j.jhazmat.2016.04.066
Carneiro, J., Tobaldi, D., Capela, M., Novais, R., Seabra, M., & Labrincha, J. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378. https://doi.org/10.1016/j.wasman.2018.09.032
Debadatta, D., & Pramanik, K. (2013). A study on chemical leaching of iron from red mud using sulphuric acid. Research Journal of Chemistry and Environment, 17(7), 50–56.
do Prado, N. T., Heitmann, A. P., Mansur, H. S., Mansur, A. A., Oliveira, L. C., & de Castro, C. S. (2017). PET-modified red mud as catalysts for oxidative desulfurization reactions. Journal of Environmental Sciences, 57, 312–320. https://doi.org/10.1016/j.jes.2017.01.011
Evans, K. (2016). The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy, 2(4), 316–331. https://doi.org/10.1007/s40831-016-0060-x
Hidayat, A., Roziq, G. K., Muhammad, F., Kurniawan, W., & Hinode, H. (2020). Biodiesel synthesis from used cooking oil using red mud as heterogeneous catalyst. Materials Science Forum, 981, 144–149. https://doi.org/10.4028/www.scientific.net/MSF.991.144
Jahromi, H., & Agblevor, F. A. (2018). Hydrodeoxygenation of pinyon-juniper catalytic pyrolysis oil using red mud-supported nickel catalysts. Applied Catalysis B: Environmental, 236, 1–12. https://doi.org/10.1016/j.apcatb.2018.05.008
Karimi, Z., & Rahbar-Kelishami, A. (2023). Efficient utilization of red mud waste via stepwise leaching to obtain α-hematite and mesoporous γ-alumina. Scientific Reports, 13(1), 8527. https://doi.org/10.1038/s41598-023-35753-w
Karimi, Z., & Rahbar-Kelishami, A. (2024). The study of acid leaching on the mineralogical and microscopic changes of red mud. Mining, Metallurgy & Exploration, 41(2), 1121–1133. 10.1007/s42461-024-00948-w
Klauber, C., Gräfe, M., & Power, G. (2011). Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy, 108(1–2), 11–32. https://doi.org/10.1016/j.hydromet.2011.02.007
Kong, H., Zhou, T., Yang, X., Gong, Y., Zhang, M., & Yang, H. (2022). Iron recovery technology of red mud—A review. Energies, 15(10), 3830. https://doi.org/10.3390/en15103830
Li, B., Zhang, B., Ning, P., He, L., & Zuo, X. (2018). Present status and prospect of red mud resource utilization and safety treatment. Chemical Industry and Engineering Progress, 37(2), 714–722. 10.16085/j.issn.1000-6613.2017-0843
Lima, M., Thives, L., Haritonovs, V., & Bajars, K. (2017). Red mud application in construction industry: Review of benefits and possibilities. IOP Conference Series: Materials Science and Engineering, 245, https://iopscience.iop.org/article/10.1088/1757-899X/251/1/012033
Mahinroosta, M., Karimi, Z., & Allahverdi, A. (2020). Recycling of red mud for value-added applications: A comprehensive review. Applied Clay Science, 195, 105735. 10.1016/B978-0-12-803581-8.11474-2
Pepper, R. A., Couperthwaite, S. J., & Millar, G. J. (2016). Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Minerals Engineering, 99, 8–18. https://doi.org/10.1016/j.mineng.2016.09.012
Qi, X., Wang, H., Zhang, L., Xu, B., Shi, Q., & Li, F. (2020). Removal of Cr(III) from aqueous solution by using bauxite residue (red mud): Identification of active components and column tests. Chemosphere, 245, 125560. https://doi.org/10.1016/j.chemosphere.2019.125560
Rukhlyadeva, M., Belousov, M., Nikonenko, E., Ismagilova, G., & Kolesnikova, M. (2015). Production of black iron oxide from red mud. Russian Journal of Applied Chemistry, 88(3), 377–381. 10.1134/S1070427215030027
Scribot, C., Maherzi, W., Benzerzour, M., Mamindy-Pajany, Y., & Abriak, N.-E. (2018). A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Construction and Building Materials, 163, 21–31. https://doi.org/10.1016/j.conbuildmat.2017.12.092