Main Article Content

Abstract

This study developed a hybrid adsorbent derived from activated fly ash (FA) and humic acid (HA) for effective Mn²⁺ removal from aqueous solutions. Fly ash was activated using 1 M NaOH to increase its surface hydroxyl groups (≡Si–OH and ≡Al–OH) and enhance reactivity. The activated FA was then composited with HA, which contains abundant –COOH and –OH groups, forming an inorganic–organic hybrid with improved adsorption capability. The HA–FA composite with a 1:3 mass ratio exhibited the highest Mn²⁺ removal efficiency of 98.80% after 120 minutes, significantly outperforming both HA and FA individually. FTIR analysis confirmed the formation of Si–O–C and Al–O–C linkages, indicating strong chemical interactions between the mineral and organic phases. Statistical analysis (Shapiro–Wilk, Levene, and ANOVA; p < 0.05) demonstrated that both adsorbent composition and contact time significantly influenced the adsorption efficiency. Overall, the HA–FA hybrid represents a low-cost, sustainable, and high-performance adsorbent capable of efficiently removing heavy metals from wastewater, providing a promising approach for transforming industrial and natural wastes into functional environmental materials

Keywords

Adsorption Activated Fly Ash Humic Acid Manganese Heavy metal removal

Article Details

References

  1. Afrianti, N. H., Herviyati, Purwanto, B. H., & Anwar, K. (2023). Pengaruh sistem olah tanah dan pemberian pupuk nitrogen jangka panjang terhadap kandungan asam humat dan asam fulvat tanah ke-34 di Politeknik Negeri Lampung. Jurnal Agrotek Tropika, 11(3), 687–694.
  2. Alhawas, M. S., Rafique, M. I., Ahmad, M., Al-Wabel, M. I., Usman, A. R. A., Al-Swadi, H. A., & Al-Farraj, A. S. (2023). Ball mill, humic acid, and rock phosphate-modified Conocarpus biochar for efficient removal of heavy metals from contaminated water. Sustainability, 15(14), 11474. https://doi.org/10.3390/su151411474
  3. Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Osibote, O. A., Darmokoesoemo, H., & Kusuma, H. S. (2021). Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: A review. Journal of Materials Research and Technology, 14, 2751–2774. https://doi.org/10.1016/j.jmrt.2021.07.140
  4. Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2022). Heavy metals removal/stabilization from municipal solid waste incineration fly ash: A review and recent trends. Journal of Material Cycles and Waste Management, 24(5), 1693–1717. https://doi.org/10.1007/s10163-022-01452-3
  5. Boguta, P., Sokołowska, Z., Skic, K., & Tomczyk, A. (2019). Insight into the interaction mechanism of iron ions with soil humic acids: The effect of pH and chemical properties of humic acids. Journal of Environmental Management, 245, 367–374. https://doi.org/10.1016/j.jenvman.2019.05.097
  6. Dutta, D., Borah, J. P., & Puzari, A. (2021). Adsorption of Mn²⁺ from aqueous solution using manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM). Adsorption Science & Technology, 2021, Article ID 5597299. https://doi.org/10.1155/2021/5597299
  7. Giyatmi, & Fazliyana. (2018). Penurunan kadar Cr dalam limbah penyamakan kulit secara adsorpsi menggunakan abu layang. Sekolah Tinggi Teknologi Nuklir – BATAN.
  8. Gupta, P., Nagpal, G., & Gupta, N. (2021). Fly ash-based geopolymers: An emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 89. https://doi.org/10.1186/s43088-021-00179-8
  9. Khairul Anuar, M. A., Mahat, N. S., Rusli, N. M., Alam, M. N. H. Z., & Zaini, M. A. A. (2021). Insight into the optimization of mass and contact time in two-stage adsorber design for malachite green removal by coconut shell activated carbon. International Journal of Biomass and Renewables, 10(2), 1–8.
  10. Li, G., Li, M., Zhang, X., Cao, P., Jiang, H., Luo, J., & Jiang, T. (2022). Hydrothermal synthesis of zeolites–calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)₂–NaOH for aqueous heavy metals removal. International Journal of Mining Science and Technology, 32(3), 563–573. https://doi.org/10.1016/j.ijmst.2022.03.002
  11. Mthombeni, N. H., Mbakop, S., & Onyango, M. S. (2016, May 4–6). Adsorptive removal of manganese from industrial and mining wastewater [Paper presentation]. Proceedings of the 2016 Annual Conference on Sustainable Research and Innovation, Nairobi, Kenya.
  12. Murphy, O. P., Vashishtha, M., Palanisamy, P., & Kumar, K. V. (2023). A review of adsorption isotherms and design calculations for optimizing adsorbent mass and contact time. ACS Omega, 8(19), 17407–17430. https://doi.org/10.1021/acsomega.2c08155
  13. Naldi, F. S., & Lisha, S. Y. (2018). Pemanfaatan limbah fly ash sebagai adsorben logam Fe pada limbah cair. Jurnal Aerasi, 2(1), 48–53.
  14. Sedaghat-Nejad, R., Shahverdi, H. R., & Askari-Paykani, M. (2022). Introduction and mechanical evaluation of a novel 3rd generation medium manganese AHSS with 86 GPa% of PSE. Materials Science and Engineering: A, 843, 143104. https://doi.org/10.1016/j.msea.2022.143104
  15. Shafi, M. I., Zhu, Z., Wang, X., Hassan, W., Zhang, X., & Younas, M. U. (2020). Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy, 10(9), 1224. https://doi.org/10.3390/agronomy10091224
  16. Shaila, G., Tauhid, A., & Tustiyani, I. (2019). Pengaruh dosis urea dan pupuk organik cair asam humat terhadap pertumbuhan dan hasil tanaman jagung manis. Agritrop, 17(1), 35–44.
  17. Sunarsih, S., Purba, R. P., Sitorus, N., Sari, L. K., & Sari, M. (2018). Analisis paparan kadmium, besi, dan mangan pada air terhadap gangguan kulit pada masyarakat Desa Ibul Besar Kecamatan Indralaya Selatan Kabupaten Ogan Ilir. Jurnal Kesehatan Lingkungan Indonesia, 17(1), 68–73.
  18. Vogelsang, C., & Umar, M. (2023). Municipal solid waste fly ash-derived zeolites as adsorbents for the recovery of nutrients and heavy metals—A review. Water, 15(21), 3817. https://doi.org/10.3390/w15213817
  19. Xu, H. (2021). Cd(II) and Pb(II) absorbed on humic acid-iron pillared bentonite: Kinetics, thermodynamics and mechanism of adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 126005. https://doi.org/10.1016/j.colsurfa.2020.126005
  20. Xue, S., Hu, Y., Wan, K., & Miao, Z. (2024). Exploring humic acid as an efficient and selective adsorbent for lead removal in multi-metal coexistence systems: A review. Separations, 11(3), 80. https://doi.org/10.3390/separations11030080
  21. Yusuf, M., Chuah, L., Khan, M. A., & Choong, T. S. (2014). Adsorption of nickel on electric arc furnace slag: Batch and column studies. Separation Science and Technology, 49(3), 388–397. https://doi.org/10.1080/01496395.2013.852203
  22. Zhang, X., Li, Y., Wu, M., Pang, Y., Hao, Z., Hu, M., Qiu, R., & Chen, Z. (2021). Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: Kinetics, mechanism and column adsorption. Bioresource Technology, 320(Part A), 124264. https://doi.org/10.1016/j.biortech.2020.124264