Main Article Content
Abstract
Textile wastewater is a major contributor to aquatic pollution, as it contains synthetic dyes such as Methylene Blue (MB), which are toxic, persistent, and biodegradation-resistant. This study investigates the adsorption performance of activated carbon derived from mangosteen peel (Garcinia mangostana) activated with hydrogen peroxide (H₂O₂) for MB removal from aqueous solution. Activated carbon was prepared by carbonization at 850 °C, followed by chemical activation with diluted 50% H₂O₂. Adsorption tests were performed using 50 mg of adsorbent in 250 mL of MB solution (50 ppm) for 120 min, and residual concentrations were determined by UV–Vis spectrophotometry at 663 nm. H₂O₂ activation increased the specific surface area from 522 to 700 m²/g and enriched the carbon surface with oxygen-containing functional groups (–OH, C=O). The contact angle decreased from 134,01° to 55,83°, indicating improved hydrophilicity. The activated carbon achieved 68% MB removal, significantly higher than the non-activated carbon (16%). Adsorption kinetics were well described by the pseudo-second-order model, with a high determination coefficient (R² = 0.988).
Keywords
Article Details
References
- Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
- Alnaizy, R., Aidan, A., & Qasim, M. (2013). Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 1(3), 424–430. https://doi.org/10.1016/j.jece.2013.06.005
- Aritonang, A. B., Selpiana, H., Wibowo, M. A., Warsidah, W., & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 277. https://doi.org/10.20961/jkpk.v7i3.66567
- Beyan, S. M., Prabhu, S. V., Sissay, T. T., & Getahun, A. A. (2021). Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports, 14(November 2020), 100664. https://doi.org/10.1016/j.biteb.2021.100664
- Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101
- Hasnaoui, A., Chikhi, M., Balaska, F., Seraghni, W., Boussemghoune, M., & Dizge, N. (2024). Electrocoagulation employing recycled aluminum electrodes for methylene blue remediation. Desalination and Water Treatment, 319(April), 100453. https://doi.org/10.1016/j.dwt.2024.100453
- Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93. https://doi.org/10.11648/j.ijpp.20170203.13
- Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49(March), 102952. https://doi.org/10.1016/j.jwpe.2022.102952
- Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
- Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004
- Khaki, E., Abyar, H., Nowrouzi, M., Younesi, H., Abdollahi, M., & Enderati, M. G. (2021). Comparative life cycle assessment of polymeric membranes: Polyacrylonitrile, polyvinylimidazole and poly (acrylonitrile-co-vinylimidazole) applied for CO2 sequestration. Environmental Technology and Innovation, 22, 101507. https://doi.org/10.1016/j.eti.2021.101507
- Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14(2). https://doi.org/10.3390/w14020242
- Khan, M. A., ALOthman, Z. A., Naushad, M., Khan, M. R., & Luqman, M. (2015). Adsorption of methylene blue on strongly basic anion exchange resin (Zerolit DMF): kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 53(2), 515–523. https://doi.org/10.1080/19443994.2013.838527
- Khoshnood Motlagh, E., Asasian-Kolur, N., Sharifian, S., & Ebrahimian Pirbazari, A. (2021). Sustainable rice straw conversion into activated carbon and nano-silica using carbonization-extraction process. Biomass and Bioenergy, 144(December 2020), 105917. https://doi.org/10.1016/j.biombioe.2020.105917
- López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19. https://doi.org/10.1007/s42452-019-0977-3
- Mohammed, Shitu, & Ibrahim. (2014). Removal of methylene blue dye using low cost adsorbent. Research Journal of Chemical Sciences, 4(1), 91–102.
- Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3
- Nayagam, P., Oliver, & Prasanna, K. (2022). Utilization of shell-based agricultural waste adsorbents for removing dyes: A review. Chemosphere, 291(October 2021), 132737. https://doi.org/10.1016/j.chemosphere.2021.132737
- Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1(October), 100032. https://doi.org/10.1016/j.clet.2020.100032
- Rigoletto, M., Laurenti, E., & Tummino, M. L. (2024). An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide. Catalysts, 14(4). https://doi.org/10.3390/catal14040267
- Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
- Shen, C., Wen, Y., Kang, X., & Liu, W. (2011). H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 166(2), 474–482. https://doi.org/10.1016/j.cej.2010.10.075
- Soffian, M. S., Abdul Halim, F. Z., Aziz, F., A.Rahman, M., Mohamed Amin, M. A., & Awang Chee, D. N. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 9(March), 100259. https://doi.org/10.1016/j.envadv.2022.100259
- SUHIRMAN, S.-. (2023). Uji Kemampuan Partikel KMnO4 Teremban Dalam Karbon Aktif Tempurung Kelapa Sawit Terhadap H2S Dalam Reaktor Biogas Unggun Tetap. Unistek, 10(2), 134–143. https://doi.org/10.33592/unistek.v10i2.3806
- Suhirman, S., Ariyanto, T., & Prasetyo, I. (2021). Preparation of magnesium oxide confined in activated carbon synthesized from palm kernel shell and its application for hydrogen sulfide removal. Key Engineering Materials, 884(1), 77–82. https://doi.org/10.1088/1755-1315/963/1/012031
- Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4(November 2021), 100291. https://doi.org/10.1016/j.rechem.2022.100291
- Tolkou, A. K., Maroulas, K. N., Theologis, D., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C-Journal of Carbon Research, 10(1). https://doi.org/10.3390/c10010022
- Vatanpour, V., Paziresh, S., Dehqan, A., Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2021). Hydrogen peroxide treated g-C3N4 as an effective hydrophilic nanosheet for modification of polyethersulfone membranes with enhanced permeability and antifouling characteristics. Chemosphere, 279, 130616. https://doi.org/10.1016/j.chemosphere.2021.130616
- Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z
- Yuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24). https://doi.org/10.3390/molecules27248775
- Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337(June), 125432. https://doi.org/10.1016/j.biortech.2021.125432
- Zhu, W., Wu, Z., Zhao, S., Lv, F., Zhang, Y., & Guo, S. (2023). Selective adsorption and separation of methylene blue from wastewater by self-standing polyvinylpyrrolidone and SiO2 electrospun membranes. Chemical Engineering Science, 280(June), 119009. https://doi.org/10.1016/j.ces.2023.119009
- Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
- Alnaizy, R., Aidan, A., & Qasim, M. (2013). Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 1(3), 424–430. https://doi.org/10.1016/j.jece.2013.06.005
- Aritonang, A. B., Selpiana, H., Wibowo, M. A., Warsidah, W., & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 277. https://doi.org/10.20961/jkpk.v7i3.66567
- Beyan, S. M., Prabhu, S. V., Sissay, T. T., & Getahun, A. A. (2021). Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports, 14(November 2020), 100664. https://doi.org/10.1016/j.biteb.2021.100664
- Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101
- Hasnaoui, A., Chikhi, M., Balaska, F., Seraghni, W., Boussemghoune, M., & Dizge, N. (2024). Electrocoagulation employing recycled aluminum electrodes for methylene blue remediation. Desalination and Water Treatment, 319(April), 100453. https://doi.org/10.1016/j.dwt.2024.100453
- Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93. https://doi.org/10.11648/j.ijpp.20170203.13
- Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49(March), 102952. https://doi.org/10.1016/j.jwpe.2022.102952
- Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
- Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004
- Khaki, E., Abyar, H., Nowrouzi, M., Younesi, H., Abdollahi, M., & Enderati, M. G. (2021). Comparative life cycle assessment of polymeric membranes: Polyacrylonitrile, polyvinylimidazole and poly (acrylonitrile-co-vinylimidazole) applied for CO2 sequestration. Environmental Technology and Innovation, 22, 101507. https://doi.org/10.1016/j.eti.2021.101507
- Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14(2). https://doi.org/10.3390/w14020242
- Khan, M. A., ALOthman, Z. A., Naushad, M., Khan, M. R., & Luqman, M. (2015). Adsorption of methylene blue on strongly basic anion exchange resin (Zerolit DMF): kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 53(2), 515–523. https://doi.org/10.1080/19443994.2013.838527
- Khoshnood Motlagh, E., Asasian-Kolur, N., Sharifian, S., & Ebrahimian Pirbazari, A. (2021). Sustainable rice straw conversion into activated carbon and nano-silica using carbonization-extraction process. Biomass and Bioenergy, 144(December 2020), 105917. https://doi.org/10.1016/j.biombioe.2020.105917
- López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19. https://doi.org/10.1007/s42452-019-0977-3
- Mohammed, Shitu, & Ibrahim. (2014). Removal of methylene blue dye using low cost adsorbent. Research Journal of Chemical Sciences, 4(1), 91–102.
- Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3
- Nayagam, P., Oliver, & Prasanna, K. (2022). Utilization of shell-based agricultural waste adsorbents for removing dyes: A review. Chemosphere, 291(October 2021), 132737. https://doi.org/10.1016/j.chemosphere.2021.132737
- Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1(October), 100032. https://doi.org/10.1016/j.clet.2020.100032
- Rigoletto, M., Laurenti, E., & Tummino, M. L. (2024). An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide. Catalysts, 14(4). https://doi.org/10.3390/catal14040267
- Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
- Shen, C., Wen, Y., Kang, X., & Liu, W. (2011). H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 166(2), 474–482. https://doi.org/10.1016/j.cej.2010.10.075
- Soffian, M. S., Abdul Halim, F. Z., Aziz, F., A.Rahman, M., Mohamed Amin, M. A., & Awang Chee, D. N. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 9(March), 100259. https://doi.org/10.1016/j.envadv.2022.100259
- SUHIRMAN, S.-. (2023). Uji Kemampuan Partikel KMnO4 Teremban Dalam Karbon Aktif Tempurung Kelapa Sawit Terhadap H2S Dalam Reaktor Biogas Unggun Tetap. Unistek, 10(2), 134–143. https://doi.org/10.33592/unistek.v10i2.3806
- Suhirman, S., Ariyanto, T., & Prasetyo, I. (2021). Preparation of magnesium oxide confined in activated carbon synthesized from palm kernel shell and its application for hydrogen sulfide removal. Key Engineering Materials, 884(1), 77–82. https://doi.org/10.1088/1755-1315/963/1/012031
- Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4(November 2021), 100291. https://doi.org/10.1016/j.rechem.2022.100291
- Tolkou, A. K., Maroulas, K. N., Theologis, D., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C-Journal of Carbon Research, 10(1). https://doi.org/10.3390/c10010022
- Vatanpour, V., Paziresh, S., Dehqan, A., Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2021). Hydrogen peroxide treated g-C3N4 as an effective hydrophilic nanosheet for modification of polyethersulfone membranes with enhanced permeability and antifouling characteristics. Chemosphere, 279, 130616. https://doi.org/10.1016/j.chemosphere.2021.130616
- Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z
- Yuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24). https://doi.org/10.3390/molecules27248775
- Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337(June), 125432. https://doi.org/10.1016/j.biortech.2021.125432
- Zhu, W., Wu, Z., Zhao, S., Lv, F., Zhang, Y., & Guo, S. (2023). Selective adsorption and separation of methylene blue from wastewater by self-standing polyvinylpyrrolidone and SiO2 electrospun membranes. Chemical Engineering Science, 280(June), 119009. https://doi.org/10.1016/j.ces.2023.119009
References
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Alnaizy, R., Aidan, A., & Qasim, M. (2013). Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 1(3), 424–430. https://doi.org/10.1016/j.jece.2013.06.005
Aritonang, A. B., Selpiana, H., Wibowo, M. A., Warsidah, W., & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 277. https://doi.org/10.20961/jkpk.v7i3.66567
Beyan, S. M., Prabhu, S. V., Sissay, T. T., & Getahun, A. A. (2021). Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports, 14(November 2020), 100664. https://doi.org/10.1016/j.biteb.2021.100664
Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101
Hasnaoui, A., Chikhi, M., Balaska, F., Seraghni, W., Boussemghoune, M., & Dizge, N. (2024). Electrocoagulation employing recycled aluminum electrodes for methylene blue remediation. Desalination and Water Treatment, 319(April), 100453. https://doi.org/10.1016/j.dwt.2024.100453
Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93. https://doi.org/10.11648/j.ijpp.20170203.13
Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49(March), 102952. https://doi.org/10.1016/j.jwpe.2022.102952
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004
Khaki, E., Abyar, H., Nowrouzi, M., Younesi, H., Abdollahi, M., & Enderati, M. G. (2021). Comparative life cycle assessment of polymeric membranes: Polyacrylonitrile, polyvinylimidazole and poly (acrylonitrile-co-vinylimidazole) applied for CO2 sequestration. Environmental Technology and Innovation, 22, 101507. https://doi.org/10.1016/j.eti.2021.101507
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14(2). https://doi.org/10.3390/w14020242
Khan, M. A., ALOthman, Z. A., Naushad, M., Khan, M. R., & Luqman, M. (2015). Adsorption of methylene blue on strongly basic anion exchange resin (Zerolit DMF): kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 53(2), 515–523. https://doi.org/10.1080/19443994.2013.838527
Khoshnood Motlagh, E., Asasian-Kolur, N., Sharifian, S., & Ebrahimian Pirbazari, A. (2021). Sustainable rice straw conversion into activated carbon and nano-silica using carbonization-extraction process. Biomass and Bioenergy, 144(December 2020), 105917. https://doi.org/10.1016/j.biombioe.2020.105917
López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19. https://doi.org/10.1007/s42452-019-0977-3
Mohammed, Shitu, & Ibrahim. (2014). Removal of methylene blue dye using low cost adsorbent. Research Journal of Chemical Sciences, 4(1), 91–102.
Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3
Nayagam, P., Oliver, & Prasanna, K. (2022). Utilization of shell-based agricultural waste adsorbents for removing dyes: A review. Chemosphere, 291(October 2021), 132737. https://doi.org/10.1016/j.chemosphere.2021.132737
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1(October), 100032. https://doi.org/10.1016/j.clet.2020.100032
Rigoletto, M., Laurenti, E., & Tummino, M. L. (2024). An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide. Catalysts, 14(4). https://doi.org/10.3390/catal14040267
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
Shen, C., Wen, Y., Kang, X., & Liu, W. (2011). H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 166(2), 474–482. https://doi.org/10.1016/j.cej.2010.10.075
Soffian, M. S., Abdul Halim, F. Z., Aziz, F., A.Rahman, M., Mohamed Amin, M. A., & Awang Chee, D. N. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 9(March), 100259. https://doi.org/10.1016/j.envadv.2022.100259
SUHIRMAN, S.-. (2023). Uji Kemampuan Partikel KMnO4 Teremban Dalam Karbon Aktif Tempurung Kelapa Sawit Terhadap H2S Dalam Reaktor Biogas Unggun Tetap. Unistek, 10(2), 134–143. https://doi.org/10.33592/unistek.v10i2.3806
Suhirman, S., Ariyanto, T., & Prasetyo, I. (2021). Preparation of magnesium oxide confined in activated carbon synthesized from palm kernel shell and its application for hydrogen sulfide removal. Key Engineering Materials, 884(1), 77–82. https://doi.org/10.1088/1755-1315/963/1/012031
Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4(November 2021), 100291. https://doi.org/10.1016/j.rechem.2022.100291
Tolkou, A. K., Maroulas, K. N., Theologis, D., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C-Journal of Carbon Research, 10(1). https://doi.org/10.3390/c10010022
Vatanpour, V., Paziresh, S., Dehqan, A., Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2021). Hydrogen peroxide treated g-C3N4 as an effective hydrophilic nanosheet for modification of polyethersulfone membranes with enhanced permeability and antifouling characteristics. Chemosphere, 279, 130616. https://doi.org/10.1016/j.chemosphere.2021.130616
Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z
Yuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24). https://doi.org/10.3390/molecules27248775
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337(June), 125432. https://doi.org/10.1016/j.biortech.2021.125432
Zhu, W., Wu, Z., Zhao, S., Lv, F., Zhang, Y., & Guo, S. (2023). Selective adsorption and separation of methylene blue from wastewater by self-standing polyvinylpyrrolidone and SiO2 electrospun membranes. Chemical Engineering Science, 280(June), 119009. https://doi.org/10.1016/j.ces.2023.119009
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Alnaizy, R., Aidan, A., & Qasim, M. (2013). Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 1(3), 424–430. https://doi.org/10.1016/j.jece.2013.06.005
Aritonang, A. B., Selpiana, H., Wibowo, M. A., Warsidah, W., & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 277. https://doi.org/10.20961/jkpk.v7i3.66567
Beyan, S. M., Prabhu, S. V., Sissay, T. T., & Getahun, A. A. (2021). Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports, 14(November 2020), 100664. https://doi.org/10.1016/j.biteb.2021.100664
Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101
Hasnaoui, A., Chikhi, M., Balaska, F., Seraghni, W., Boussemghoune, M., & Dizge, N. (2024). Electrocoagulation employing recycled aluminum electrodes for methylene blue remediation. Desalination and Water Treatment, 319(April), 100453. https://doi.org/10.1016/j.dwt.2024.100453
Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93. https://doi.org/10.11648/j.ijpp.20170203.13
Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49(March), 102952. https://doi.org/10.1016/j.jwpe.2022.102952
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004
Khaki, E., Abyar, H., Nowrouzi, M., Younesi, H., Abdollahi, M., & Enderati, M. G. (2021). Comparative life cycle assessment of polymeric membranes: Polyacrylonitrile, polyvinylimidazole and poly (acrylonitrile-co-vinylimidazole) applied for CO2 sequestration. Environmental Technology and Innovation, 22, 101507. https://doi.org/10.1016/j.eti.2021.101507
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14(2). https://doi.org/10.3390/w14020242
Khan, M. A., ALOthman, Z. A., Naushad, M., Khan, M. R., & Luqman, M. (2015). Adsorption of methylene blue on strongly basic anion exchange resin (Zerolit DMF): kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 53(2), 515–523. https://doi.org/10.1080/19443994.2013.838527
Khoshnood Motlagh, E., Asasian-Kolur, N., Sharifian, S., & Ebrahimian Pirbazari, A. (2021). Sustainable rice straw conversion into activated carbon and nano-silica using carbonization-extraction process. Biomass and Bioenergy, 144(December 2020), 105917. https://doi.org/10.1016/j.biombioe.2020.105917
López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19. https://doi.org/10.1007/s42452-019-0977-3
Mohammed, Shitu, & Ibrahim. (2014). Removal of methylene blue dye using low cost adsorbent. Research Journal of Chemical Sciences, 4(1), 91–102.
Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3
Nayagam, P., Oliver, & Prasanna, K. (2022). Utilization of shell-based agricultural waste adsorbents for removing dyes: A review. Chemosphere, 291(October 2021), 132737. https://doi.org/10.1016/j.chemosphere.2021.132737
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1(October), 100032. https://doi.org/10.1016/j.clet.2020.100032
Rigoletto, M., Laurenti, E., & Tummino, M. L. (2024). An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide. Catalysts, 14(4). https://doi.org/10.3390/catal14040267
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
Shen, C., Wen, Y., Kang, X., & Liu, W. (2011). H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 166(2), 474–482. https://doi.org/10.1016/j.cej.2010.10.075
Soffian, M. S., Abdul Halim, F. Z., Aziz, F., A.Rahman, M., Mohamed Amin, M. A., & Awang Chee, D. N. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 9(March), 100259. https://doi.org/10.1016/j.envadv.2022.100259
SUHIRMAN, S.-. (2023). Uji Kemampuan Partikel KMnO4 Teremban Dalam Karbon Aktif Tempurung Kelapa Sawit Terhadap H2S Dalam Reaktor Biogas Unggun Tetap. Unistek, 10(2), 134–143. https://doi.org/10.33592/unistek.v10i2.3806
Suhirman, S., Ariyanto, T., & Prasetyo, I. (2021). Preparation of magnesium oxide confined in activated carbon synthesized from palm kernel shell and its application for hydrogen sulfide removal. Key Engineering Materials, 884(1), 77–82. https://doi.org/10.1088/1755-1315/963/1/012031
Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4(November 2021), 100291. https://doi.org/10.1016/j.rechem.2022.100291
Tolkou, A. K., Maroulas, K. N., Theologis, D., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C-Journal of Carbon Research, 10(1). https://doi.org/10.3390/c10010022
Vatanpour, V., Paziresh, S., Dehqan, A., Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2021). Hydrogen peroxide treated g-C3N4 as an effective hydrophilic nanosheet for modification of polyethersulfone membranes with enhanced permeability and antifouling characteristics. Chemosphere, 279, 130616. https://doi.org/10.1016/j.chemosphere.2021.130616
Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z
Yuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24). https://doi.org/10.3390/molecules27248775
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337(June), 125432. https://doi.org/10.1016/j.biortech.2021.125432
Zhu, W., Wu, Z., Zhao, S., Lv, F., Zhang, Y., & Guo, S. (2023). Selective adsorption and separation of methylene blue from wastewater by self-standing polyvinylpyrrolidone and SiO2 electrospun membranes. Chemical Engineering Science, 280(June), 119009. https://doi.org/10.1016/j.ces.2023.119009