Main Article Content

Abstract

Perkembangan sektor industri, khususnya industri tekstil, menyebabkan peningkatan pencemaran lingkungan perairan. Salah satu komponen utama dalam industri tekstil adalah zat warna seperti Methylene blue, yang merupakan pewarna organik berbahaya dan dapat mencemari lingkungan. Degradasi Methylene blue dapat dilakukan melalui proses fotokatalisis menggunakan semikonduktor berbasis oksida logam. Penelitian ini bertujuan untuk mengetahui karakterisasi hasil sintesis komposit Cu-TiO2/ZnO, menganalisis pengaruh perbedaan massa Cu pada komposit, dan mengkaji pengaruh variasi suhu kalsinasi pada pembuatan material fotokatalis. Dalam penelitian ini, sintesis nanokomposit Cu-TiO2/ZnO dilakukan dengan variasi massa Cu 2%, 5%, dan 8%, serta variasi suhu kalsinasi 175oC, 200oC, dan 225oC, melalui metode sol-gel. Karakterisasi material dilakukan dengan Scanning Electron Microscope (SEM), UV-Vis spectrophotometer dan Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). Hasil karakterisasi SEM menunjukkan bahwa morfologi sampel adalah berbentuk bulat (sphere)  dengan ukuran yang bervariasi dan tidak beraturan. Sementara itu, hasil karakterisasi menggunakan UV-Vis DRS mengindikasikan bahwa Cu-TiO2/ZnO memberikan respon yang baik terhadap sinar tampak (λ>400 nm). Aktivasi fotokatalitik Cu-TiO2/ZnO diuji dalam degradasi Methylene blue selama 2 jam dibawah sinar UV, dengan hasil menunjukkan tingkat degradasi sebesar 83,575%. Selain itu, pengujian fuel cell menunjukkan bahwa tegangan yang dihasilkan oleh Cu(2%)-TiO2/ZnO, Cu(5%)-TiO2/ZnO, dan Cu(8%)-TiO2/ZnO masing-masing sebesar 0,514V, 0,896V, dan 0,922V.

Keywords

Degradasi, Fotokatalis, Kalsinasi, Methylene blue

Article Details

References

  1. Adamu, A., Isaacs, M., Boodhoo, K., & Abegão, F. R. (2023). Investigation of Cu/TiO2 synthesis methods and conditions for CO2 photocatalytic reduction via conversion of bicarbonate/carbonate to formate. Journal of CO2 Utilization, 70. https://doi.org/10.1016/j.jcou.2023.102428
  2. Ali, M. M., Haque, M. J., Kabir, M. H., Kaiyum, M. A., & Rahman, M. S. (2021). Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities. Results in Materials, 11, 100199. https://doi.org/10.1016/j.rinma.2021.100199
  3. Babel, S., Sekartaji, P. A., & Sudrajat, H. (2017). TiO2 as an effective nanocatalyst for photocatalytic degradation of humic acid in water environment. Journal of Water Supply: Research and Technology - AQUA, 66(1). https://doi.org/10.2166/aqua.2016.102
  4. Chahid, S., de los Santos, D. M., & Alcántara, R. (2018). The effect of Cu-doped TiO 2 photoanode on photovoltaic performance of dye-sensitized solar cells. ACM International Conference Proceeding Series. https://doi.org/10.1145/3286606.3286854
  5. Chen, H., Chen, N., Gao, Y., & Feng, C. (2018). Photocatalytic degradation of methylene blue by magnetically recoverable Fe3O4/Ag6Si2O7 under simulated visible light. Powder Technology, 326. https://doi.org/10.1016/j.powtec.2017.12.029
  6. Degabriel, T., Colaço, E., Domingos, R. F., El Kirat, K., Brouri, D., Casale, S., Landoulsi, J., & Spadavecchia, J. (2018). Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO2 nanoparticles in aqueous solutions. Physical Chemistry Chemical Physics, 20(18). https://doi.org/10.1039/c7cp08054a
  7. Degabriel, T., Colaço, E., Domingos, R. F., El Kirat, K., Brouri, D., Casale, S., Landoulsi, J., & Spadavecchia, J. (2023). Correction: Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO 2 nanoparticles in aqueous solutions . Physical Chemistry Chemical Physics, 25(5). https://doi.org/10.1039/d2cp90106d
  8. Delsouz Khaki, M. R., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018a). Enhanced UV–Visible photocatalytic activity of Cu-doped ZnO/TiO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 29(7). https://doi.org/10.1007/s10854-017-8515-9
  9. Delsouz Khaki, M. R., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018b). Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journal of Molecular Liquids, 258. https://doi.org/10.1016/j.molliq.2017.11.030
  10. Derouich, G., Alami Younssi, S., Bennazha, J., Cody, J. A., Ouammou, M., & El Rhazi, M. (2020). Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal. Journal of Environmental Chemical Engineering, 8(3). https://doi.org/10.1016/j.jece.2020.103809
  11. E, D. (2019). Photocatalytic Degradation of Methylene Blue Using Silver Nanoparticles Synthesized from Gymnema Sylvestre and Antimicrobial Assay. Novel Research in Sciences, 2(2). https://doi.org/10.31031/nrs.2019.02.000532
  12. El-Shazly, A. N., Hegazy, A. H., El Shenawy, E. T., Hamza, M. A., & Allam, N. K. (2021). Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Solar Energy Materials and Solar Cells, 220. https://doi.org/10.1016/j.solmat.2020.110825
  13. Fotiou, T., Triantis, T. M., Kaloudis, T., & Hiskia, A. (2015). Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chemical Engineering Journal, 261. https://doi.org/10.1016/j.cej.2014.03.095
  14. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2). https://doi.org/10.1016/S0926-3373(00)00276-9
  15. Ikram, M., Naeem, M., Zahoor, M., Rahim, A., Hanafiah, M. M., Oyekanmi, A. A., Shah, A. B., Mahnashi, M. H., Al Ali, A., Jalal, N. A., Bantun, F., & Sadiq, A. (2022). Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. International Journal of Environmental Research and Public Health, 19(16). https://doi.org/10.3390/ijerph19169962
  16. Jain, N., Dwivedi, M. K., & Waskle, A. (2016). Adsorption of Methylene Blue Dye from Industrial Effluents Using Coal Fly Ash. International Journal of Advanced Engineering Research and Science (IJAERS), 3(4).
  17. Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4). https://doi.org/10.1556/1886.2019.00018
  18. Janani, B., Gayathri, G., Syed, A., Raju, L. L., Marraiki, N., Elgorban, A. M., Thomas, A. M., & Khan, S. S. (2020). The Effect of Various Capping Agents on Surface Modifications of CdO NPs and the Investigation of Photocatalytic Performance, Antibacterial and Anti-biofilm Activities. Journal of Inorganic and Organometallic Polymers and Materials, 30(5), 1865–1876. https://doi.org/10.1007/s10904-020-01440-w
  19. Kadam, A. A., Lade, H. S., Patil, S. M., & Govindwar, S. P. (2013). Low cost CaCl2 pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation. Bioresource Technology, 132. https://doi.org/10.1016/j.biortech.2013.01.059
  20. Kee, M. W., Lam, S. M., Sin, J. C., Zeng, H., & Mohamed, A. R. (2020). Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation. Journal of Photochemistry and Photobiology A: Chemistry, 391. https://doi.org/10.1016/j.jphotochem.2019.112353
  21. Kee, M. W., Soo, J. W., Lam, S. M., Sin, J. C., & Mohamed, A. R. (2018). Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents. Journal of Environmental Management, 228. https://doi.org/10.1016/j.jenvman.2018.09.038
  22. Khalid, N. R., Ahmed, E., Hong, Z., Ahmad, M., Zhang, Y., & Khalid, S. (2013). Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceramics International, 39(6). https://doi.org/10.1016/j.ceramint.2013.02.051
  23. Lam, S. M., Sin, J. C., Lin, H., Li, H., & Zeng, H. (2020). Greywater and bacteria removal with synchronized energy production in photocatalytic fuel cell based on anodic TiO2/ZnO/Zn and cathodic CuO/Cu. Chemosphere, 245. https://doi.org/10.1016/j.chemosphere.2019.125565
  24. Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., & Nordin, N. (2018a). Exploring the relationship between molecular structure of dyes and light sources for photodegradation and electricity generation in photocatalytic fuel cell. Chemosphere, 209. https://doi.org/10.1016/j.chemosphere.2018.06.157
  25. Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., & Nordin, N. (2018b). Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell. Chemosphere, 194. https://doi.org/10.1016/j.chemosphere.2017.11.166
  26. Li, L., Liu, J., Su, Y., Li, G., Chen, X., Qiu, X., & Yan, T. (2009). Surface doping for photocatalytic purposes: Relations between particle size, surface modifications, and photoactivity of SnO2:Zn 2+ nanocrystals. Nanotechnology, 20(15). https://doi.org/10.1088/0957-4484/20/15/155706
  27. Li, P., Zhou, X., Yang, H., He, Y., Kan, Y., Zhang, Y., Shang, Y., Zhang, Y., Cao, X., & Leung, M. K. H. (2024). Approaches for Enhancing Wastewater Treatment of Photocatalytic Fuel Cells: A Review. Materials, 17(9), 1–17. https://doi.org/10.3390/ma17092139
  28. Mahmoud, M. A., Poncheri, A., Badr, Y., & Abd El Waned, M. G. (2009). Photocatalytic degradation of methyl red dye. South African Journal of Science, 105(7–8). https://doi.org/10.4102/sajs.v105i7/8.86
  29. Mornani, E. G., Mosayebian, P., Dorranian, D., & Behzad, K. (2016). Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. Journal of Ovonic Research, 12(2), 75–80.
  30. Mukkavilli, R. S., Moharana, N., Singh, B., Fischer, T., Vollnhals, F., Ichangi, A., Kumar, K. C. H., Christiansen, S., Kim, K. H., Kwon, S., Kumar, R., & Mathur, S. (2024). Electrocatalytic activity, phase kinetics, spectroscopic advancements, and photocorrosion behaviour in tantalum nitride phases. Nano Energy, 129(May). https://doi.org/10.1016/j.nanoen.2024.110046
  31. Nasikhudin, Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012069
  32. Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. In Results in Engineering (Vol. 16). https://doi.org/10.1016/j.rineng.2022.100678
  33. Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. In Renewable and Sustainable Energy Reviews (Vol. 81). https://doi.org/10.1016/j.rser.2017.08.020
  34. Pellegrino, F., Pellutiè, L., Sordello, F., Minero, C., Ortel, E., Hodoroaba, V. D., & Maurino, V. (2017). Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Applied Catalysis B: Environmental, 216. https://doi.org/10.1016/j.apcatb.2017.05.046
  35. Preda, S., Pandele-Cușu, J., Petrescu, S. V., Ciobanu, E. M., Petcu, G., Culiță, D. C., Apostol, N. G., Costescu, R. M., Raut, I., Constantin, M., & Predoană, L. (2022). Photocatalytic and Antibacterial Properties of Doped TiO2 Nanopowders Synthesized by Sol−Gel Method. Gels, 8(10), 1–20. https://doi.org/10.3390/gels8100673
  36. Rajamanickam, D., & Shanthi, M. (2016). Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arabian Journal of Chemistry, 9. https://doi.org/10.1016/j.arabjc.2012.05.006
  37. Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. In Chemical Engineering Journal (Vol. 151, Issues 1–3). https://doi.org/10.1016/j.cej.2009.02.026
  38. Sahu, M., & Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Research Letters, 6. https://doi.org/10.1186/1556-276X-6-441
  39. Saidani, A., Boudraa, R., Fendi, K., Benouadah, L., Benabbas, A., Djermoune, A., Salvestrini, S., Bollinger, J. C., Alayyaf, A. A., & Mouni, L. (2025). Effect of Calcination Temperature on the Photocatalytic Activity of Precipitated ZnO Nanoparticles for the Degradation of Rhodamine B Under Different Light Sources. Water (Switzerland), 17(1). https://doi.org/10.3390/w17010032
  40. Saini, K., Sahoo, A., Kumar, J., Kumari, A., Pant, K. K., Bhatnagar, A., & Bhaskar, T. (2023). Effective utilization of discarded reverse osmosis post-carbon for adsorption of dyes from wastewater. Environmental Research, 231. https://doi.org/10.1016/j.envres.2023.116165
  41. Sarac, M. F., Ozturk, K., & Yatmaz, H. C. (2020). A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance. Materials Characterization, 159. https://doi.org/10.1016/j.matchar.2019.110042
  42. Sehar, S., Sher, F., Zhang, S., Khalid, U., Sulejmanović, J., & Lima, E. C. (2020). Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials. Journal of Molecular Liquids, 313. https://doi.org/10.1016/j.molliq.2020.113494
  43. Sharma, K., Pandit, S., Mathuriya, A. S., Gupta, P. K., Pant, K., & Jadhav, D. A. (2023). Microbial Electrochemical Treatment of Methyl Red Dye Degradation Using Co-Culture Method. Water (Switzerland), 15(1). https://doi.org/10.3390/w15010056
  44. Sugandi, D., Wahyuni, N., & Rahmalia, W. (2024). Fotocatalytic degradation of methylene blue by floating TiO2-coconut fiber. Acta Chimica Asiana, 7(1), 437–442. https://doi.org/10.29303/aca.v7i1.183
  45. Suganthi, N., Thangavel, S., & Kannan, K. (2020). Hibiscus subdariffa leaf extract mediated 2-D fern-like ZnO/TiO2 hierarchical nanoleaf for photocatalytic degradation. FlatChem, 24(July), 100197. https://doi.org/10.1016/j.flatc.2020.100197
  46. Tang, H., Geng, K., Hu, Y., & Li, N. (2020). Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. Journal of Membrane Science, 605. https://doi.org/10.1016/j.memsci.2020.118107
  47. Tian, L., Li, Z., Xu, X., & Zhang, C. (2021). Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. In Journal of Materials Chemistry A (Vol. 9, Issue 23). https://doi.org/10.1039/d1ta01108a
  48. Triandi, R., & Gunlazuardi, J. (2001). Preparasi Lapisan Tipis TiO2 sebagai Fotokatalis : Keterkaitan antara Ketebalan dan Aktivitas Fotokatalisis. Jurnal Penelitian Universitas Indonesia, 5.
  49. Vifta, R. L., Sutarno, & Suyanta. (2016). Studi Aktifitas Fotokatalik MCM-41 Teremban Zn pada Zat Warna Metilen Biru. Jurnal MIPA, 39(1).
  50. Wang, Y., Lan, Y., Bu, D., Qian, B., Wang, Y., Wang, B., Wu, Q., Li, S., Zhang, Y., & Song, X. M. (2020). A study on tandem photoanode and photocathode for photocatalytic formaldehyde fuel cell. Electrochimica Acta, 352. https://doi.org/10.1016/j.electacta.2020.136476
  51. WHO/UNICEF. (2021). WHO/UNICEF Joint Monitoring Program for Water Supply, Sanitation and Hygiene (JMP) – Progress on household drinking water, sanitation and hygiene 2000 – 2020. In Imi-Sdg6 Sdg 6 Progress Reports.
  52. Zhao, K., Bai, J., Zeng, Q., Zhang, Y., Li, J., Li, L., Xia, L., & Zhou, B. (2017). Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes. Journal of Hazardous Materials, 337. https://doi.org/10.1016/j.jhazmat.2017.05.004