Main Article Content
Abstract
Brondolan sawit merupakan buah sawit yang lepas dari tandan buah karena terlalu matang
ataupun yang jatuh saat proses pemanenan tandan buah segar. Minyak brondolan sawit
umumnya memiliki kandungan free fatty acid (FFA)yang tinggi. Pada penelitian ini, minyak
brondolan sawit dikonversi menjadi biodisel dengan dua tahapan proses yaitu esterifikasi
dengan gliserol berkatalis ZnCl2 dilanjutkan dengan transesterifikasi menggunakan katalis
CaO dan NaOH Pengaruh katalis ZnCl2 , NaOH dan CaO terhadap penurunan free fatty acid
dan hasil biodiesel diinvestigasi. Hasil penelitian menunjukkan bahwa proses esterifikasi
dengan gliserol berkatalis ZnCl2 menurunkan nilai free fatty acid. Pada variasi konsentrasi
ZnCl2 sebanyak 0,15%, 0,20%, 0,25%, dan 0,35% menunjukkan bahwa konsentrasi optimal
ZnCl2 pada 0,35% dengan penurunan FFA sebesar 97% dari 37,40% ke 1,06%. Selanjutnya
proses transesterifikasi dilakukan dengan katalis NaOH sebesar 1% dan CaO sebesar 35%
pada variasi perbandingan jumlah minyak dan metanol sebesar 1:10 ; 1:15 ; 1:20 ; 1:30.
Hasil penelitian menunjukkan bahwa jumlah perbandingan minyak dan metanol yang optimal
untuk katalis NaOH adalah sebesar 1:30 karena menghasilkan jumlah biodiesel sebesar
2,35% dengan nilai FFA sebesar 2,17% Sedangkan dengan kalatali CaO, perbandingan
minyak dan metanol yang optimal adalah sebesar 1:30 dengan hasil biodiesel sebesar 2,60%
dan nilai FFA sebesar 3,08% Dari penelitian ini dapat disimpulkan bahwa persen berat
katalis sangat mempengaruhi dalam penurunan kandungan FFA yang terdapat pada minyak
CPO, dan perbandingan antara minyak:metanol mempengaruhi hasil yield biodiesel yang
akan didapatkan.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Anderson, A. J. C. (1962). Refining of Oils and Fats for Edible Purposes (2nd ed.). Pergamon Press, London. pp. 92-103.
- Ayoola, A. A., Fayomi, O. S. I., Adeeyo, O. A., Omodara, J. O., Adegbite, O., & Kunelbayev, M. (2019). Impact assessment of biodiesel production using CaO catalyst obtained from two different sources. Cogent Engineering, 6(1).
- Aziz, I. (2011). Laporan Penelitian Kinetika Reaksi Transesterifikasi Minyak Goreng Bekas. Jakarta: Program Studi Kimia, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah.
- Berchmans, H. J., & Hirata, S. (2008). Biodiesel Production from Crude Jatropha curcas L. Seed Oil with a High Content of Free Fatty Acids. Bioresource Technology, 99(6), 1716-1721.
- Bharti, Singh, B., & Dey, R. (2019). Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J Nanostruct Chem, 9, 269–280.
- Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.
- Dewi, N., & Hidajati. (2012). Peningkatan Mutu Minyak Goreng Curah Menggunakan Adsorben Bentonit Teraktivasi. Chemistry (Easton), 1(2), 47–53.
- Dharsono, W., & Oktari, Y. S. (2013). Proses Pembuatan Biodiesel dari Dedak dan Metanol dengan Esterifikasi In Situ. Jurnal Teknologi Kimia dan Industri, 2, 33-39.
- Direktorat Jenderal Perkebunan Kementrian Pertanian Republik Indonesia. (2022). Statistik Perkebunan Unggulan Nasional 2020-2022. Sekretariat Direktorat Jenderal Perkebunan.
- Elvianto, D. D., & Erni, J. S. (2016). Transesterification of Palm Oil with NaOH Catalyst Using Co-solvent Methyl Ester. International Journal of ChemTech Research, 9(12), 570-575.
- Enweremadu, C. C., & Mbarawa, M. M. (2009). Technical Aspects of Production and Analysis of Biodiesel from Used Cooking Oil—A Review. Renewable and Sustainable Energy Reviews, 13(9), 2205-2224.
- Fanani, N., & Ningsih, E. (2018). Analisis Kualitas Minyak Goreng Habis Pakai yang Digunakan oleh Pedagang Penyetan di Daerah Rungkut Surabaya Ditinjau dari Kadar Air dan Free Fatty Acid (FFA). Jurnal IPTEK, 22(2), 59-66.
- Garcia, R., Figueiredo, F., Brandão, M., Hegg, M., Castanheira, É., Malça, J., Nilsson, A., & Freire, F. (2020). LCA For Energy System and Food Product: A Meta-analysis of the Life Cycle Greenhouse Gas Balances of Microalgae Biodiesel. International Journal of Life Cycle Assessment, 25, 1737–1748.
- Ghadge, S. V., & Raheman, H. (2005). Biodiesel Production from Mahua (Madhuca indica) Oil Having High Free Fatty Acids. Biomass and Bioenergy, 28(6), 601-605.
- Kumar, A., Tiwari, A., & Raheman, H. (2007). Biodiesel Production from Jatropha Oil (Jatropha curcas) with High Free Fatty Acids: An Optimized Process. Biomass and Bioenergy, 31(8), 569-575.
- Kombe, G. G., Temu, A. K., Rajabu, H. M., & Mrema, G. D. (2011). High Free Fatty Acid (FFA) Feedstock Pre-Treatment Method for Biodiesel Production. Second International Conference on Advance in Engineering and Technology, pp. 176-182.
- Kombe, G. G., Abraham, K. T., Hassan, M. R., Godwill, D. M., Jibrail, K., & Keat, T. L. (2013). Pre-Treatment of High Free Fatty Acids Oils by Chemical Re-Esterification for Biodiesel Production—A Review. Advances in Chemical Engineering and Science, 3(4).
- Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87(1), 1083-1095.
- Mardiana, & Santoso, T. (2020). Purifikasi Minyak Goreng Bekas dengan Proses Absorpsi Menggunakan Arang Kulit Kacang Tanah (Arachis hypogea L.). Media Eksakta, 16(1), 49-56.
- Marlina, L., & Ramdan, I. (2019). Identifikasi Kadar Asam Lemak Bebas pada Berbagai Jenis Minyak Goreng Nabati. Jurnal TEDC, 11(1), 53–59.
- Mekonnen, K. D., & Sendekie, Z. B. (2021). NaOH-Catalyzed Methanolysis Optimization of Biodiesel Synthesis from Desert Date Seed Kernel Oil. ACS Omega, 6(37), 24082–24091.
- Okoye, P. U., Longoria, A., Sebastian, P. J., Wang, S., Li, S., & Hameed, B. H. (2020). A Review on Recent Trends in Reactor Systems and Azeotrope Separation Strategies for Catalytic Conversion of Biodiesel-Derived Glycerol. Science of the Total Environment, 719, 134595.
- Päsha, M. A., & Nizam, A. (2010). Zinc Chloride–Catalyzed Expeditious Route to Nitriles. Synthesis Communications, 40(9), 1276–1279.
- Raba, A., Jose, J., & Ortega, B. (2016). Synthesis of Calcium Oxide by Means of Two Different Chemical Methods. Journal of Chemical Engineering, no. December.
- Sharma, S., Saxena, V., Baranwal, A., Chandra, P., & Pandey, L. M. (2018). Engineered Nanoporous Materials Mediated Heterogeneous Catalysts and Their Implications in Biodiesel Production. Materials Science for Energy Technologies, 1(1), 11–21.
- Sheng, M., Tian, D. L., & Cao, G. M. (2008). Production of Biodiesel Fuel from Waste Edible Oil. China Academic Journals, 26.
- Tayari, S., Abedi, R., & Rahi, A. (2020). Comparative Assessment of Engine Performance and Emissions Fueled with Three Different Biodiesel Generations. Renewable Energy, 147, 1058–1069.
- Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel Production Technology. Department of Energy, Washington DC.
References
Anderson, A. J. C. (1962). Refining of Oils and Fats for Edible Purposes (2nd ed.). Pergamon Press, London. pp. 92-103.
Ayoola, A. A., Fayomi, O. S. I., Adeeyo, O. A., Omodara, J. O., Adegbite, O., & Kunelbayev, M. (2019). Impact assessment of biodiesel production using CaO catalyst obtained from two different sources. Cogent Engineering, 6(1).
Aziz, I. (2011). Laporan Penelitian Kinetika Reaksi Transesterifikasi Minyak Goreng Bekas. Jakarta: Program Studi Kimia, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah.
Berchmans, H. J., & Hirata, S. (2008). Biodiesel Production from Crude Jatropha curcas L. Seed Oil with a High Content of Free Fatty Acids. Bioresource Technology, 99(6), 1716-1721.
Bharti, Singh, B., & Dey, R. (2019). Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J Nanostruct Chem, 9, 269–280.
Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.
Dewi, N., & Hidajati. (2012). Peningkatan Mutu Minyak Goreng Curah Menggunakan Adsorben Bentonit Teraktivasi. Chemistry (Easton), 1(2), 47–53.
Dharsono, W., & Oktari, Y. S. (2013). Proses Pembuatan Biodiesel dari Dedak dan Metanol dengan Esterifikasi In Situ. Jurnal Teknologi Kimia dan Industri, 2, 33-39.
Direktorat Jenderal Perkebunan Kementrian Pertanian Republik Indonesia. (2022). Statistik Perkebunan Unggulan Nasional 2020-2022. Sekretariat Direktorat Jenderal Perkebunan.
Elvianto, D. D., & Erni, J. S. (2016). Transesterification of Palm Oil with NaOH Catalyst Using Co-solvent Methyl Ester. International Journal of ChemTech Research, 9(12), 570-575.
Enweremadu, C. C., & Mbarawa, M. M. (2009). Technical Aspects of Production and Analysis of Biodiesel from Used Cooking Oil—A Review. Renewable and Sustainable Energy Reviews, 13(9), 2205-2224.
Fanani, N., & Ningsih, E. (2018). Analisis Kualitas Minyak Goreng Habis Pakai yang Digunakan oleh Pedagang Penyetan di Daerah Rungkut Surabaya Ditinjau dari Kadar Air dan Free Fatty Acid (FFA). Jurnal IPTEK, 22(2), 59-66.
Garcia, R., Figueiredo, F., Brandão, M., Hegg, M., Castanheira, É., Malça, J., Nilsson, A., & Freire, F. (2020). LCA For Energy System and Food Product: A Meta-analysis of the Life Cycle Greenhouse Gas Balances of Microalgae Biodiesel. International Journal of Life Cycle Assessment, 25, 1737–1748.
Ghadge, S. V., & Raheman, H. (2005). Biodiesel Production from Mahua (Madhuca indica) Oil Having High Free Fatty Acids. Biomass and Bioenergy, 28(6), 601-605.
Kumar, A., Tiwari, A., & Raheman, H. (2007). Biodiesel Production from Jatropha Oil (Jatropha curcas) with High Free Fatty Acids: An Optimized Process. Biomass and Bioenergy, 31(8), 569-575.
Kombe, G. G., Temu, A. K., Rajabu, H. M., & Mrema, G. D. (2011). High Free Fatty Acid (FFA) Feedstock Pre-Treatment Method for Biodiesel Production. Second International Conference on Advance in Engineering and Technology, pp. 176-182.
Kombe, G. G., Abraham, K. T., Hassan, M. R., Godwill, D. M., Jibrail, K., & Keat, T. L. (2013). Pre-Treatment of High Free Fatty Acids Oils by Chemical Re-Esterification for Biodiesel Production—A Review. Advances in Chemical Engineering and Science, 3(4).
Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87(1), 1083-1095.
Mardiana, & Santoso, T. (2020). Purifikasi Minyak Goreng Bekas dengan Proses Absorpsi Menggunakan Arang Kulit Kacang Tanah (Arachis hypogea L.). Media Eksakta, 16(1), 49-56.
Marlina, L., & Ramdan, I. (2019). Identifikasi Kadar Asam Lemak Bebas pada Berbagai Jenis Minyak Goreng Nabati. Jurnal TEDC, 11(1), 53–59.
Mekonnen, K. D., & Sendekie, Z. B. (2021). NaOH-Catalyzed Methanolysis Optimization of Biodiesel Synthesis from Desert Date Seed Kernel Oil. ACS Omega, 6(37), 24082–24091.
Okoye, P. U., Longoria, A., Sebastian, P. J., Wang, S., Li, S., & Hameed, B. H. (2020). A Review on Recent Trends in Reactor Systems and Azeotrope Separation Strategies for Catalytic Conversion of Biodiesel-Derived Glycerol. Science of the Total Environment, 719, 134595.
Päsha, M. A., & Nizam, A. (2010). Zinc Chloride–Catalyzed Expeditious Route to Nitriles. Synthesis Communications, 40(9), 1276–1279.
Raba, A., Jose, J., & Ortega, B. (2016). Synthesis of Calcium Oxide by Means of Two Different Chemical Methods. Journal of Chemical Engineering, no. December.
Sharma, S., Saxena, V., Baranwal, A., Chandra, P., & Pandey, L. M. (2018). Engineered Nanoporous Materials Mediated Heterogeneous Catalysts and Their Implications in Biodiesel Production. Materials Science for Energy Technologies, 1(1), 11–21.
Sheng, M., Tian, D. L., & Cao, G. M. (2008). Production of Biodiesel Fuel from Waste Edible Oil. China Academic Journals, 26.
Tayari, S., Abedi, R., & Rahi, A. (2020). Comparative Assessment of Engine Performance and Emissions Fueled with Three Different Biodiesel Generations. Renewable Energy, 147, 1058–1069.
Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel Production Technology. Department of Energy, Washington DC.