PENGKLASIFIKASIAN KEMAMPUAN AKADEMIK MAHASISWA MENGGUNAKAN METODE INFORMATION GAIN DAN NAIVE BAYES CLASSIFIER DALAM PREDIKSI PENYELESAIAN STUDI TEPAT WAKTU

Rd Muhammad Alfajri, Yulison Herry Chrisnanto, Rezki Yuniarti alfajri607@gmail.com

Abstract


Data mahasiswa merupakan data yang berlimpah terdiri dari awal masuk sampai dengan kelulusan . dikarenakan data yang sangat banyak faktor data warehouse menjadi peluang besar untuk mencul, data yang masuk secara beruntun pada setiap tahunnya memiliki pola tertentu sehingga  diperlukan suatu teknik analisis data yang dapat mengambil informasi yang berharga dari sekian banyak data yang terkumpul pada suatu perangkat komputer atau pelaporan. penelitian ini  dilakukan pada Universitas Jenderal Achmad Yani tepatnya pada jurusan informatika diperlukan suatu teknik analisis data  untuk menganalisis data tersebut. Pada penelitian kali ini data latih sebanyak 82 dan data uji sebanyak 35 diperlukan beberapa atribut dalam menyelesaikan persolanan tersebut diantaranya NIM, nama mahasiswa matakuliah semester 1 sampai dengan 6 dengan total jumlah matakuliah sebanyak 65 dengan penyelesaian studi tepat waktu <= 4 tahun dan > 4 tahun metode yang digunakan adalah Naïve Bayes classifier penelitian ini memperoleh nilai akurasi sebelum menggunakan seleksi fitur sebesar 62 % dan setelah menggunakan seleksi fitur meningkat tidak signifikan sebesar 6 % atau menjadi 68 % sehingga seleksi fitur menggunakan information gain dapat menghilangkan noise dalam proses pengklasifikasian menggunakan naive bayes classifier.

Kata kunci: KHS, mata kuliah semester 1-6, naïve bayes classifier


Full Text:

F25.144-149.PDF


DOI: http://dx.doi.org/10.36499/psnst.v1i1.1524

Refbacks

  • There are currently no refbacks.


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone:  +6285226622609
 

 

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.