PENCERAMAN AIR SUNGAI TUK AKIBAT AIR LIMBAH DOMESTIK (STUDI KASUS KELURAHAN BENDAN NGISOR DAN KELURAHAN SAMPANGAN KECAMATAN GAJAH MUNGKUR KOTA SEMARANG)

L.A. Sasonko *

Abstract

Tuk River has high potential to be polluted by domestic waste water because it passed along market area and residence. That condition is urgent to be concerned because the river empties near of Kaligaring River water taking spot which has been as drink water resources of PDAM (district enterprise of drinking water) Semarang City. Research purpose: (1) to evaluate water quality on Tuk River that caused by domestic waste water throwing include BOD, nitrate and phosphate parameter change; (2) to know the daily fluctuation of Tuk River water quality include BOD, nitrate and phosphate parameter. The research population of water quality included whole Tuk River water in Bendan Ngisor and Sampangan Village. Water sample were taken on four spot. Generally, The Tuk River was has more function as drainage channel than as water resource so debit, BOD, phosphate and nitrate more increasing from up river region to low river region. That condition was more damaged by many concrete drainage channels that makes domestic waste water infiltration not possible and the lack of open green space make the run-off flow directly to the water body. Total content of domestic waste water flow from Tuk River was indicated from content on spot D that has located at Tuk River empties which related directly with Kaligaring River. Generally, the peak of total content for a lot of domestic waste water indicator was attained on Saturday morning. It indicated that on this period there was many residents activity which produce domestic waste water.

Keyword : domestic waste water, Tuk River

Pendahuluan

Di negara-negara berkembang termasuk Indonesia, pencemaran domestik merupakan jumlah pencemar terbesar (85%) yang masuk ke badan air. Sedang dinegara-negara maju, pencemaran domestik merupakan 15% dari seluruh pencemaran yang memasuki badan air. Oleh karena itu, perensiata kehadiran pencemar domestik di dalam badan air sering dijadikan indikator maju dalam suatu negara (Surjawidra, 1996). Limbah domestik yang paling dominan adalah jenis organik yang berupa kotoran manusia dan hewan. Jenis limbah domestik yang lain adalah limbah domestik anorganik yang diakibatkan oleh plastik serta penggunaan deterjen, shampo, cairan pemutih, pewangi dan bahan kimia lainnya. Limbah domestik jenis ini relatif lebih sulit untuk dihancurkan. Jika kuantitas dan intensitas limbah domestik ini masih dalam batas normal, alam masih mampu melakukan proses kimia, fisika, dan biologi secara alami. Namun, peningkatan populasi manusia telah menyebabkan peningkatan kuantitas dan intensitas pembuangan...

Identifikasi dan Perumusan Masalah

Oleh karena itu, penulis merasa perlu melakukan suatu penelitian untuk mengetahui penurunan kualitas (pencemaran) air Sungai Tuk akibat air limbah domestik yang dihasilkan oleh penduduk di sekitar Sungai Tuk. Beberapa pertanyaan penelitian yang akan dikaji dalam penelitian ini termasuk hal ini adalah:

1. Apakah air limbah domestik yang masuk ke dalam perairan Sungai Tuk menimbulkan penurunan kualitas air sungai secara kimia?
2. Seberapa besar fluktusi harian penurunan kualitas air Sungai Tuk ditinjau dari beberapa parameter kimia yang dikaji?

Tujuan Penelitian
Penelitian ini bertujuan untuk:
1. Mengevaluasi kualitas perairan di Sungai Tuk akibat pembuangan air limbah domestik yang mencakup perubahan beberapa parameter kimia.
2. Mengetahui fluktusi harian kualitas air Sungai Tuk ditinjau dari beberapa parameter kimia yang dikaji.

Metode Penelitian
Rancangan Penelitian
Penelitian ini merupakan penelitian evaluatif yang terfokus pada penelitian fisik. Penelitian secara fisik tentang analisis kualitas air Sungai Tuk dilakukan dengan menganalisa secara kimia sampel air yang diambil dari air Sungai Tuk pada beberapa titik lokasi terpilih.

Fokus Penelitian
Fokus penelitian ini adalah meliputi kajian dan analisis tentang kualitas perairan di Sungai Tuk ditinjau dari parameter kunci BOD, fosfat dan nitrat.

Lokasi dan Waktu Penelitian

Variabel Penelitian
Definisi operasional variabel-variabel penelitian adalah sebagai berikut:
1. Kebutuhan okisigen biokimia (BOD) adalah banyaknya okisigen dalam ppm yang digunakan untuk menguraikan benda organik oleh bakteri sehingga limbah tersebut jernih kembali. Proses tersebut memerlukan waktu selama 100 hari pada suhu 20°C. Akhiri tetapi di laboratorium digunakan waktu 5 hari sehingga dikenal sebagai BOD.
2. Phospat merupakan salah satu bahan yang sering terdapat dalam air limbah domestik karena banyak digunakan dalam serbuk pencuci serta deterjen.
3. Nitrat merupakan indikator keberadaan amonia dalam air, karena amonia secara cepat dioksidi dengan menanfaatkan ketersediaan oksigen terlarut dalam air menjadi nitrat. Ammonia dalam air limbah domestik berasal dari air seni, tinja dan oksidasi zat organik secara mikrobiologis.
Jenis dan Sumber Data
Data yang digunakan dalam penelitian ini meliputi data primer dan data sekunder. Data primer untuk penelitian fisik diperoleh dengan melakukan pengukuran di lapangan dan analisis laboratorium. Data sekunder berupa deskripsi umum Sungai Tuk diperoleh dari instansi terkait, yaitu Bappeda Kota Semarang dan Kantor Desa.

Instrumen Penelitian
Alat-alat yang digunakan dalam penelitian ini adalah:
1. Pelampung, meteran dan stop watch, berfungsi untuk mengukur kecepatan arus sungai
2. Ember dan botol, berfungsi untuk menampung sampel air sungai
3. Alat uji parameter BOD, phospat dan nitrat di laboratorium

<table>
<thead>
<tr>
<th>Titik</th>
<th>Daerah Pengambilan Sampel</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Jl. Bukit Unggul</td>
<td>Berdekatan dengan permukiman perumahan sedang/besar</td>
</tr>
<tr>
<td>B</td>
<td>Perumusan Sampangan</td>
<td>Berdekatan dengan permukiman perumahan kecil</td>
</tr>
<tr>
<td>C</td>
<td>Jl. Menoreh Utara (belakang Pasar Sampangan)</td>
<td>Berdekatan dengan permukiman kampung dan pasar</td>
</tr>
<tr>
<td>D</td>
<td>Muara Sungai Tuk</td>
<td>Titik pertemuan dengan Sungai Kaligaran</td>
</tr>
</tbody>
</table>

Sumber: Data Primer, 2006

Teknik Pengumpulan dan Analisa Data
Cara dan prosedur pengumpulan data penelitian yang dilakukan di lapangan dan di laboratorium secara rinci adalah sebagai berikut:
- Pengumpulan data di lapangan
 Data penelitian dikumpulkan pada bulan Februari 2006. Pengumpulan data dilakukan dalam dua waktu, yaitu pada jam 06.00 - 08.00 dan 16.00 - 18.00 mengingat pada waktu tersebut Sungai Tuk menerima beban pencemaran yang relatif lebih besar dibanding pada waktu yang lain. Pengumpulan data dilakukan secara serentak di titik-titik pengambilan sampel.
 1. Sampel air
 Langkah-langkahnya adalah sebagai berikut:
 a. Menetukan lokasi pengambilan sampel
 b. Pengambilan sampel pada setiap lokasi dilakukan dua kali yaitu sebelum tercemar limbah dan sebelum air limbah masuk ke badan sungai
 c. Melakukan pengambilan sampel air dengan menggunakan botol polythylene steril
 d. Pengambilan sampel di setiap titik diuap dua kali pada waktu yang berlainan
 e. Pengambilan sampel dilakukan dari hulu ke hilir pada pagi dan sore hari
 2. Kecepatan aliran sungai
 a. Menyiapkan pelampung kayu
 b. Menetukan bagian badan air yang lurus dan menentukan jarak tempuh pelampung sejauh 10 m dari hulu ke hilir
 c. Mengukur waktu tempuh pelampung dengan menggunakan stopwatch
 d. Kecepatan aliran sungai diperoleh dengan membagi antara jarak tempuh dengan waktu tempuh pelampung
 3. Luas Penampang Alir
Pencemaran Air Sungai Tuk sebagai Air Limbah Domestik

(L.A. Sasongko)

untuk mengolah data terkumpul melalui

Bumbisan Sampel
penelitian tentang air Sungai Tuk Bendan Ngsor dan Kecamatan Gajah semprot untuk evaluasi sisi disumbangkan dalam lokasi pengambilan adanya empat dengan
di Kelurahan Bendan Ngsor dan
Kelurahan Bendan Pusaka pengambilan dari dua kali sehari
2 hari untuk melihat

1. a. Mengukur lebar sungai tegak lurus dengan arah aliran air sungai
b. Membagi lebar sungai menjadi jumlah bilangan ganjil (7 titik) sama
 panjang
c. Mengukur lebar (jarak) antar titik
d. Mengukur kedalaman air pada masing-masing titik tersebut
 e. Menggunkan rumus Segitiga Simpson untuk mengetahui luas
 penampang alir.

4. Debit Di Sepanjang Aliran Sungai Tuk
 Debit diukur dengan menggunakan rumus sebagai berikut:
 \[\text{Debit} = A \times v \]
 dimana:
 \[A = \text{luas penampang air satuan m}^2 \]
 \[v = \text{kecepatan aliran air satuan m}/\text{det} \]

 * Pengumpulan Data di Laboratorium

 Setelah data di lapangan terkumpul dilakukan perhitungan di laboratorium sebagai berikut:
 1. BOD dihitung dengan menggunakan metode Titrasi Winkler, yaitu meliputi pemeriksaan DO pada 0 hari dan 5 hari setelah inkubasi pada suhu 20°C. Satuan kadar BOD adalah ppm. Perhitungan BOD secara sederhana dapat dicari dengan menggunakan rumus berikut:
 \[\text{BOD}_t = \text{DO}_0 - \text{DO}_t \]

2. Phosp dihitung dengan menggunakan metode Titrasi. Titrasi dilakukan dengan menggunakan natrium hidroksida 1 N dan 0,5 timoformalin LP sehingga terjadi warna biru. Kemudian dilakukan penetapan dengan blan.

 3. Nitrat dihitung dengan menggunakan metode Titrasi. Titrasi dilakukan dengan menggunakan natrium hidroksida 1 N menggunakan indikator merah metil LP.

Hasil Penelitian

3.1.1. Letak dan batas daerah penelitian

Gambar 1. Debit Air Sungai Tuk Selama Pengukuran (satuan m³/det)
Gambar 2. Beban BOD Pagi di Selanjang Aliran Sungai Tuk Selama Waktu Pengukuran

Gambar 3. Beban BOD Sore di Selanjang Aliran Sungai Tuk Selama Waktu Pengukuran

Gambar 4. Beban Phospat Pagi di Selanjang Aliran Sungai Tuk Selama Waktu Pengukuran

Gambar 5. Beban Phospat Sore di Selanjang Aliran Sungai Tuk Selama Waktu Pengukuran
Debit Air Sungai Tuk
Penelitian ini mengumpulkan data tentang debit air Sungai Tuk dan air limbah domestik. Debit air Sungai Tuk diukur dari hulu ke hilir, yaitu pada titik A, B, C dan D (Gambar 1). Keseluruhan titik-titik tersebut, menggambarkan pertambahan debit air setelah menerima masukan air limbah dari anak sungai dan saluran-saluran air.

3.1.3. Kualitas Air Sungai Tuk

a. BOD (Biological Oxygen Demand)
Berdasarkan hasil uji laboratorium yang dilakukan terhadap sampel air Sungai Tuk (titik A, B, C dan D) dan debit pada titik-titik tersebut terlihat bahwa terjadi kenaikan beban BOD dari hulu ke hilir. Beban BOD pagi mencapai nilai tertinggi pada hari Sabtu di titik D dan terendah pada hari Jumat di titik A. Beban BOD sore mencapai nilai terendah pada hari Jumat di titik A dan tertinggi pada hari Minggu di titik D. Rata-rata peningkatan beban BOD sore terbesar terjadi dari titik C ke D sebesar 145 %.

b. Fosfat
Berdasarkan hasil uji laboratorium yang dilakukan terhadap sampel air Sungai Tuk (titik A, B, C dan D) dan debit pada titik-titik tersebut terlihat bahwa terjadi kenaikan...

c. Nitrat

Pembahasan

Debit dan Kualitas Air Sungai Tuk

Secara umum Sungai Tuk lebih cenderung berfungsi sebagai saluran drainase daripada sebagai sumber air. Hal tersebut mengakibatkan debit dan beban pencemaran dari hulu ke hilir semakin meningkat. Apalagi lingkungan di sekitar Sungai Tuk berupa permukiman padat dan terdapat sebaran surab sentra kegiatan ekonomi yaitu Pasar Sampangan. Kondisi ini semakin diperparah dengan banyaknya saluran drainase yang terbuat dari beton sehingga tidak memungkinkan terjadinya peresapan air limbah secara alami ke dalam tanah. Lingkungan yang padat mengakibatkan kurangnya ruang hijau terbuka yang menjadikan air limpasan (run off) langsung masuk ke badan sungai.

Berdasarkan hasil penelitian diketahui bahwa debit Sungai Tuk mengalami peningkatan paling tinggi dari titik A ke titik B. Hal tersebut disebabkan adanya sebuah anakan Sungai Tuk yang bermuara di antara kedua titik tersebut. Masuknya aliran air dari anakan Sungai Tuk tersebut menyebabkan kecepatan aliran air pada titik B menjadi lebih tinggi. Selain itu pada titik B ini luas penampang sungainya juga lebih besar.

Berdasarkan hasil penelitian diketahui bahwa sepanjang aliran Sungai Tuk beban BOD fospat dan nitrat meningkat dari hulu ke hilir. Hal tersebut menunjukkan bahwa terdapat suplai air limbah domestik yang mengandung bahan tersebut dari outlet-outlet ke badan Sungai Tuk. Peningkatan rata-rata beban BOD total terbesar adalah dari titik C ke D karena diantara kedua titik tersebut terjadi pergantangan aliran sehingga mengakibatkan aktivitas organisme meningkat yang pada gilirannya akan meningkatkan nilai BOD. Peningkatan rata-rata beban fospat total terbesar adalah dari titik A ke B karena diantara kedua titik tersebut terjadi pergantangan anak sungai yang memiliki debit air limbah domestik relatif besar. Peningkatan rata-rata beban nitrat total terbesar adalah dari titik B ke C karena diantara kedua titik tersebut terjadi pergantangan sentra kegiatan ekonomi yang berpotensi meningkatkan kadar nitrat yaitu Pasar Sampangan dan beberapa bangunan perkantoran.

Secara garis besar, beban pencak beberapa parameter di atas mengindikasikan kebisaan warga di sekitar Sungai Tuk dalam kaitannya dengan aktifitas pembuangan air
Pencemaran Air Sungai Tuk akibat Air Limbah Domestik

Limbah domestik. Sebagai misal, warga sekitar banyak yang melakukan aktifitas mencuci dan bersih-bersih pada Sabtu pagi dan Selasa sore dengan melihat tingginya parameter beban fosfat pada hari-hari tersebut.

4.2.2. Kontribusi Air Sungai Tuk terhadap Kualitas Air Sungai Kaligaran

Beban total aliran air limbah domestik dari Sungai Tuk yang masuk ke Sungai Kaligaran diindikasikan dari besaran beban yang ada pada titik D. Titik tersebut terletak di muara Sungai Tuk yang berhubungan langsung dengan Sungai Kaligaran. Secara umum, beban total beberapa indikator air limbah domestik mencapai puncaknya pada hari Sabtu Pagi. Hal ini menunjukkan bahwa pada waktu tersebut terjadi banyak aktivitas yang dilakukan oleh penduduk di sekitar Sungai Tuk yang menghasilkan air limbah domestik dengan nilai beban cemaran relatif tinggi.

Kondisi tersebut di atas dapat menjadi masukan bagi Perusahaan Daerah Air Minum (PDAM) yang menjadikan air Sungai Kaligaran sebagai bahan baku produknya. Artinya, pada hari tersebut hendaknya PDAM menerapkan standar mutu yang lebih ketat agar produk air minum yang dihasilkannya memiliki kualitas baik dan tidak berbahaya.

Kesimpulan

Daftar Pustaka

