DETEKSI MALWARE MENGGUNAKAN MACHINE LEARNING DENGAN METODE ENSEMBLE

Iik Muhamad Malik Matin, Maria Agustin, Bambang Sugiarto, Ai Nur Asri

Abstract


Serangan malware telah menjadi perhatian penting di di era digital ini. Malware dapat diartikan sebagai perangkat lunak yang digunakan untuk melakukan perusakan sistem, pencurian atau pengumpulan informasi, hingga mendapatkan akses terhadap suatu sistem. Machine learning merupakan sub area dari ilmu komputer yang mampu memberikan komputer kemampuan untuk belajar tanpa diprogram secara eksplisit. Pada penelitian ini akan mendeteksi malware windows menggunakan machine learning dengan metode ensemble. Model klasifikasi yang digunakan adalah Decision Tree, Random forest, Bagging, AdaBoost dan Hist Gradient Boosting. Penelitian ini menggunakan dataset malware berbasis windows. Hasil yang didapatkan menggunakan algoritma Hist Gradient Boosting lebih tinggi yaitu sebesar 96,9% dibandingkan dengan algoritma Decision tree sebesar 93,5% algoritma Random forest sebesar 94,9% algoritma Adaboost sebesar 87,8% dan algoritma Bagging sebesar 95,8%

Keywords


Malware, Machine Learning, Metode Ensemble

Full Text:

PDF


DOI: http://dx.doi.org/10.36499/psnst.v13i1.9224

Refbacks

  • There are currently no refbacks.


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone:  +6285226622609
 

 

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.