PENENTUAN SUB GUDANG MENGGUNAKAN METODE GRAVITY LOCATION MODEL PADA PT XYZ

Shafira Alifa Khoirunnisa^{1*}, Susatyo Nugroho Widyo Pramono²,

Jurusan Teknik Industri, Fakultas Teknik, Universitas Diponegoro Jl. Prof. Soedarto, SH, Tembalang, Semarang, 50275.

Email: shafiraalifaa@gmail.com

Abstrak

PT XYZ merupakan perusahaan yang bergerak dalam pendistribusian dan pemasaran produk BBM di wilayah Jawa Tengah dan Yogyakarta. Untuk meningkatkan efisiensi distribusi dan kualitas pelayanan, PT XYZ membutuhkan lokasi sub-gudang yang optimal guna meminimalkan biaya distribusi serta mempercepat pelayanan kepada 270 gerai resmi yang tersebar di berbagai lokasi. Penelitian ini bertujuan untuk menentukan lokasi optimal sub-gudang menggunakan metode Gravity Location Models, yang mempertimbangkan faktor-faktor seperti jarak antar lokasi, biaya distribusi, serta jumlah gerai yang dilayani.Metode penelitian ini menggunakan analisis berbasis Gravity Location Models untuk memproses data distribusi yang ada, termasuk jarak antar gerai, frekuensi pengiriman, dan biaya distribusi. Setelah dilakukan analisis mendalam, lokasi optimal yang diusulkan berada di Gang 7, Puri, Pati, Jawa Tengah.Hasil penelitian menunjukkan bahwa pemilihan lokasi tersebut mampu mengurangi biaya distribusi secara signifikan serta meningkatkan efisiensi waktu pelayanan. Kesimpulannya, penerapan metode Gravity Location Models dalam penentuan lokasi sub-gudang terbukti efektif dalam mendukung efisiensi operasional PT XYZ di wilayah Jawa Tengah dan Yogyakarta.

Kata kunci: Distribusi, Gravity Location Models, Sub Gudang

1. PENDAHULUAN

PT XYZ merupakan perusahaan yang bergerak dibidang pendistribusian dan pemasaran produk BBM yang tesrsebar di Jawa Tengah dan Yogyakarta. Dalam proses berjalanya bisnis, distribusi merupakan faktor penting bagi perusahaan untuk dapat melakukan pengiriman produk secara tepat kepada pelanggan. Kegiatan distribusi bertujuan agar produk yang dikirimkan tepat waktu dengan ongkos yang minimal. Maka dari itu dalam perencanaan rantai pasok perlu dipertimbangkan komponen seperti fasilitas transportasi, informasi, sumber daya alam dan harga dapat dipergunakan bersama-sama secara maksimal (Anwar, 2011). Salah satu upaya agar pengiriman pada setiap gerai dapat berjalan dengan tepat waktu PT XYZ mendirikan sub gudang untuk menyimpan BBM di tangki timbun. Pada tahun 2021 PT XYZ mendirikan sub gudang di Kabupaten Demak, Jawa Tengah. Namun karena jaraknya terlalu dekat yaitu sebesar 18.6 km dinilai tidak efektif dan efisien. Faktor lain yang menyebabkan Sub Gudang ditutup adalah biaya distribusi dan waktu yang dikeluarkan lebih besar dibandingkan dari PT XYZ. Saat ini pengiriman pada setiap gerainya dikirim melalui PT XYZ dengan jarak terjauh sebesar 204 km dari PT XYZ. Hal tersebut tentunya memerlukan waktu dan jarak yang lama hingga BBM sampai ke lokasi tujuan. Untuk meningkatkan efisiensi pendistribusian BBM ke setiap gerainyasalah satunya caranya dengan mendirikan sub gudang pada lokasi optimal, maka dari itu penelitian bertujuan untuk menentukan lokasi yang paling optimal untuk didirikanya sub gudang dengan mempertimbangkan jumlah gerai pada setiap daerah, jarak tempuh, dan biaya distribusi.

Salah satu metode yang digunakan untuk menentukan lokasi gudang yang optimal adalah metode *Gravity Location Models*. Metode *Gravity Location models* merupakan salah satu metode dalam menentukan fasilitas dengan menggunakan metode ini maka jarak atau biaya menuju fasilitas-fasilitas yang akan dibangun ataupun yang telah ada akan dapat diminimalkan (Argaditia Mawadati, 2021). Pada prinsipnya metode ini mencari nilai optimal yang dapat diperoleh dengan mempertimbangkan pemenuhan *demand* dan *supply* pada biaya transportasi yang terendah. Adanya metode ini dapat mempermudah perusahaan untuk menentukan lokasi yang optimal dengan mempertimbangkan koordinat, biaya, jarak tempuh, dan permintaan pelanggan.

2. **METODOLOGI**

PT XYZ merupakan perusahaan yang bergerak dibidang pendistribusian dan pemasaran produk BBM yang tersebar di Jawa Tengah dan Yogyakarta. PT XYZ berlokasi di Semarang dan berencana mendirikan sub gudang untuk melakukan efisiensi pendistribusian. Hal ini dilakukan berdasarkan pengamatan terhadap semakin banyak gerai yang buka PT XYZ. Peneliti melihat permasalahan pemilihan lokasi sub gudang pada yang kurang optimal dan efisien. Salah satu metode untuk menentukan lokasi sub gudang dengan menggunakan gravity location models. Metode ini mendapatkan hasil yang optimal dengan menggunakan koordinat pada setiap lokasi pendistribusian. Oleh karena metode ini dapat diimplementasikan dan dapat diinterpretasikan dengan mudah oleh para pengambil keputusan di PT XYZ.

2.1. Metode Gravity Location Models

Metode yang digunakan dalam penelitian ini adalah metode Gravity Location Models. Metode Gravity Location Models merupakan salah satu metode yang digunakan dalam pemilihan lokasi fasilitas kerja. Bagian dari strategi pengembangan jaringan supply chain memberikan koordinat titik terdekat dan jarak terpendek dari suatu objek misalnya gudang dan pabrik yang menjadi penghubung antara sumbersumber pasokan dan berbagai sumber pasar (Kartika, et al., 2017). Pada prinsipnya metode ini mencari nilai optimal yang dapat diperoleh dengan mempertimbangkan pemenuhan demand dan supply pada biaya transportasi yang terendah. Dengan metode ini dapat mempermudah pengambilan keputusan dalam menentukan lokasi, biaya, dan jarak tempuh. Pada perkembangannya dasar-dasar teoritis gravitasi dalam praktik telah menyebabkan estimasi yang lebih kaya dan lebih akurat dan interpretasi lingkup spasial yang dijelaskan oleh gravitasi (Paillin, 2012). Gravity Location Models adalah Model yang digunakan untuk menentukan lokasi dari suatu fasilitas (A. A. Prasetyo & Alfandito, 2018). Model ini menggunakan beberapa asumsi (Mawadati, 2020):

Gravity Location Models adalah Model yang digunakan untuk menentukan lokasi dari suatu fasilitas (A. A. Prasetyo & Alfandito, 2018). Model ini menggunakan beberapa asumsi (Mawadati, 2020)

- 1. Ongkos transportasi diasumsikan naik sebanding dengan volume yang dipindahkan
- Baik sumber pasokan maupun pasar bisa ditentukan lokasinya pada suatu peta dengan koordinat x dan y yang jelas.
- 3. Data yang diperlukan pada model ini yaitu ongkos transportasi per unit, beban per unit jarak dari semua posisi pasokan ke kandidat lokasi fasilitas dan dari kandidat lokasi fasilitas ke semua lokasi, volume yang akan dipindahkan serta koordinat lokasi pasokan maupun pasar.

Berikut merupakan notasi-notasi yang digunakan pada metode gravity location models:

= Ongkos transportasi per unit beban antara kandidat lokasi fasilitas dengan sumber C_i pasokan

= Beban yang akan dipindahkan antara lokasi fasilitas dengan sumber pasokan

= Koordinat x dan y untuk lokasi fasilitas atau sumber pasokan i

 (X_{0n}, Y_{0n}) = Koordinat x dan y yang dihasilkan pada setiap iterasi

Untuk menghitung koordinat lokasi setiap iterasi maka menggunakan rumus ke 1 dan 2 berikut :

$$X_0 n = \frac{\sum \frac{C_i V_i X_i}{J_i}}{\sum \frac{C_i \cdot v_i}{J_i}}$$

$$Y_0 n = \frac{\sum \frac{C_i V_i Y_i}{J_i}}{\sum \frac{C_i \cdot v_i}{J_i}}$$
(1)

Untuk menghitung jarak antara dua lokasi pada model ini yang dihitung sebagai jarak geometris antara dua lokasi menggunakan rumus ke 3 sebagai berikut : $J_i = \sqrt{(x_0-x_1)^2 + (y_0-y_1)^2}$

$$J_i = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}$$
(3)

331 | Fakultas Teknik Universitas Wahid Hasyim

Penentuan Sub Gudang... (Shafira, dkk.)

Tujuan dari model ini untuk mendapatkan lokasi fasilitas yang meminimalkan total ongkosongkos pengiriman. Untuk menentukan Total Ongkos maka digunakan rumus ke 4 sebagai berikut :

$$TC_n = \Sigma C_i V_i J_i \tag{4}$$

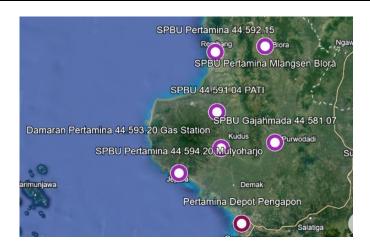
Untuk menghitung koordinat lokasi yang optimal dan meminimalkan ongkos pengiriman TC, maka dilakukan langkah-langkah perhitungan sebagai berikut:

- 1. Menghitung jarak J_i untuk lokasi kandidat fasilitas.
- 2. Menentukan koordinat lokasi
- Apabila hasil dari dua iterasi berurutan menghasilkan titik koordinat yang hampir sama maka stop iterasi dan jadikan sebagai lokasi fasilitas. Namun jika tidak maka lakukan iterasi kembali.

2.2. Sub Gudang

Sub gudang adalah istilah yang merujuk pada sub bagian atau area khusus di dalam sebuah gudang yang digunakan untuk penyimpanan atau penataan barang (Nadya, 2019). Fungsi sub gudang adalah untuk memudahkan penyimpanan dan penataan barang di dalam gudang agar lebih teratur dan efisien. (Syaichu, 2022).

2.3. Biaya Distribusi


Biaya distribusi adalah biaya yang dikeluarkan untuk mengirimkan barang atau produk dari beberapa sumber ke beberapa tujuan. Biaya distribusi dapat memakan biaya yang tinggi dan akan mengakibatkan pemborosan dari aspek waktu, aspek jarak, dan aspek tenaga apabila tidak dikelola dengan baik (Saragih, 2022). Tujuan peminimalan biaya distribusi adalah untuk mencapai efisiensi dalam proses distribusi sehingga dapat menurunkan biaya yang dikeluarkan. Proses distribusi yang efisien dapat mengurangi kerugian dalam hal waktu, uang, dan sumber daya yang digunakan, serta dapat mempengaruhi peningkatan volume penjualan (Sopian & Nusraningrum, 2022).

3. HASIL DAN PEMBAHASAN

3.1 Pengumpulan Data

Tabel 1. Lokasi SPBU Terpilih

Lokasi SPBU	Alamat				
	Jl. Alun-Alun Blora, Alun-alun,				
SPBU Blora	Alun-Alun, Kec. Blora, Kabupaten Blora,				
	Jawa Tengah 58213				
	Jl. Gajah Mada, Majenang,				
SPBU Grobogan	Purwodadi, Kec. Purwodadi, Kabupaten				
	Grobogan, Jawa Tengah 58111				
	Jl. Jend. Sudirman, Kutoharjo, Kec.				
SPBU Rembang	Rembang, Kabupaten Rembang, Jawa				
	Tengah 59219				
	Jl. Kartini, Panggang I, Panggang,				
SPBU Jepara	Kec. Jepara, Kabupaten Jepara, Jawa				
	Tengah 59411				
	Jl. Raya Pati - Kudus No.38, Puri,				
SPBU Pati	Kec. Pati, Kabupaten Pati, Jawa Tengah				
	59113				
	Jl. KHR Asnawi No.23, Pejaten,				
SPBU Kudus	Damaran, Kec. Kota Kudus, Kabupaten				
	Kudus, Jawa Tengah 59316				

Gambar 1 Lokasi SPBU Terpilih

Pada gambar 1 merupakan gambar dari daerah yang akan dipilih dari pembangunan SPBU HUB yaitu : Pengolahan data menggunakan Metode *Gravity Location Models* merupakan salah satu model yang berfungsi menentukan suatu lokasi yang menghubungkan sumber pasokan dengan beberapa lokasi konsumen. Model ini mempertimbangkan jarak, volume permintaan, dan biaya distribusi. Dalam menentukan lokasi terpilih menggunakan metode *Gravity Location Models* dapat diawali dengan menentukan data penelitian yaitu data titik koordinat Gudang Pusat ke setiap Sub Gudang. Setelah data penelitian terkumpul maka akan dilakukan proses iterasi untuk mendapatkan total ongkos dan titik koordinat yang baru. Pada tabel 1 menunjukan daerah yang akan dipilih dari pembangunan sub gudang PT XYZ: Pada perhitungan Metode *Gravity Location Models* frekuensi juga mempengaruhi hasil lokasi optimal didirikannya sub gudang. Dalam penelitian ini frekuensi yang dimaksud adalah banyaknya gerai pada setiap daerah terpilih. Pada tabel 2 menunjukan banyaknya jumlah gerai pada setiap kota terpilih:

Tabel 2. Jumlah Gerai Pada Setiap Kota

Lokasi SPBU Hub	Jumlah Gerai
SPBU HUB Blora	19
SPBU HUB Grobogan	33
SPBU HUB Rembang	17
SPBU HUB Jepara	31
SPBU HUB Pati	29
SPBU HUB Kudus	10

Pada pengolahan data menggunakan Metode *Gravity Location Models* dapat dilakukan dengan mencari koordinat dari setiap daerah terpilih. Koordinat dalam konteks ini merujuk pada lokasi geografis atau titik-titik pada peta yang diidentifikasi oleh nilai koordinat *latitude* dan *longitude*. Pada tabel 3 merupakan koordinat daerah terpilih yang akan dibangun sub gudang:

Tabel 3. Jarak dan Koordinat

Lokasi	Jarak	Koordinat X	Koordinat Y
PT XYZ	0	-6.96089565	110.4359309
SPBU HUB Blora	129	-6.978934075	111.410801
SPBU HUB Grobogan	61.5	-7.091210224	110.9046677
SPBU HUB Rembang	118	-6.703322308	111.3642862
SPBU HUB Jepara	72.6	-6.584726875	110.6786653
SPBU HUB Pati	76.7	-6.73721388	111.0196951
SPBU HUB Kudus	54.6	-6.799540745	110.8308187

Penentuan Sub Gudang... (Shafira, dkk.)

Untuk menghitung dengan menggunakan metode *gravity location models* maka harus diketahui koordinat dari masing daerah terpilih yang dihitung dari PT XYZ. Pada tabel 4 menunjukan koordinat dari setiap daerah yang dihitung dari PT XYZ :

Tabel 4. Koordinat dari PT XYZ

Lokasi	Koordinat X	Koordinat Y
PT XYZ	0	0
SPBU HUB Blora	-0.018038424	0.974870123
SPBU HUB Grobogan	-0.130314573	0.46873678
SPBU HUB Rembang	0.257573343	0.928355281
SPBU HUB Jepara	0.376168775	0.242734435
SPBU HUB Pati	0.22368177	0.583764177
SPBU HUB Kudus	0.161354905	0.394887767

Dalam metode *gravity location models*, biaya distribusi merupakan hal yang diperhitungkan sebagai salah satu faktor kunci dalam menentukan lokasi optimal suatu fasilitas. Pada tabel 5 menunjukan perhitungan biaya distribusi pada PT XYZ ke setiap daerah pilihan:

Tabel 5. Perhitungan Biaya Distribusi

	<u></u>	
Lokasi	Jarak	Biaya Distribusi
SPBU HUB Blora	129	4,660,512.00
SPBU HUB Grobogan	61.5	2,221,872.00
SPBU HUB Rembang	118	4,263,104.00
SPBU HUB Jepara	72.6	2,622,892.80
SPBU HUB Pati	76.7	2,771,017.60

3.2 Hasil Pengolahan Data dengan Metode Gravity Location

Pada perhitungan Metode *gravity location models* dilakukan dengan mengolah data-data yang telah diketahui diantaranya adalah koordinat daerah terpilih dari pusat distribusi, frekuensi pengiriman, dan biaya distribusi. Pada tabel 6 merupakan data yang diketahui dari setiap lokasi:

Tabel 6. Data Pengolahan Metode Gravity Location Model

Lokasi	Xi	Yi	Frekuensi (Vi)	Biaya Distribusi (Ci)
CDD11 IIIID D1	0.010020424	0.074070122	(, -)	(-)
SPBU HUB Blora	-0.018038424	0.974870123	19	4,660,512.00
SPBU HUB Grobogan	-0.130314573	0.468736784	33	2,221,872.00
SPBU HUB Rembang	0.257573343	0.928355281	17	4,263,104.00
SPBU HUB Jepara	0.376168775	0.242734435	31	2,622,892.80
SPBU HUB Pati	0.22368177	0.583764177	29	2,771,017.60
SPBU HUB Blora	0.161354905	0.394887767	10	1,972,588.80

Untuk menentukan lokasi terpilih perlu dilakukan proses iterasi, iterasi dilakukan hingga menghasilkan dua iterasi berurutan dengan titik koordinat yang hampir sama. Apabila telah menghasilkan titik koordinat yang hampir sama maka iterasi di berhentikan dan jadikan sebagai lokasi fasilitas. Namun jika tidak maka lakukan iterasi kembali. Pada tabel 7 menunjukan proses iterasi untuk menentukan lokasi terpilih.

Berdasarkan data tabel 7, analisis dilakukan terhadap beberapa parameter untuk setiap entitas, yaitu SPBU Blora dan SPBU Grobogan. Kolom **Xi** dan **Yi** merepresentasikan nilai indikator tertentu, di mana Xi bernilai negatif untuk kedua entitas. **Ji** berfungsi sebagai indeks pembagi untuk menghitung parameter lainnya. Kolom **Vi** menunjukkan volume atau variabel kuantitas, sedangkan **Ci** adalah nilai terkait yang menunjukkan total tertentu, seperti pendapatan atau biaya.

Tabel 7. Iterasi 1

Nam a	Xi	Yi	Ji	V	Ci	Vi CiXi/ Ji	Vi Ci Yi/ Ji	Ci Vi/ Ji	Vi Ci Ji
SPBU Blora	0.018038 4	0.974870 1	0.975036994 5	1 9	4,660,512.0 0	1638191.75 3	88534573.2 3	90816787.9 8	86,339,260.6 5
SPBU Grobogan	0.130314 6	0.468736 8	0.486514193 5	3	2,221,872.0 0	19639500.9 5	70642571	150708400. 6	35,672,084.7 2
SPBU Rembang	0.2575733 4	0.928355 3	0.963424908 5	1 7	4,263,104.0 0	19375721.9	69834686.9 6	75224096.2	69,822,069.8 8
SPBU	0.3761687	0.242734	0.447686222	3	2,622,892.8	68320533.4	44085918.9	181622021.	36,401,222.0
Jepara	7	4	0	1	0	7	3	9	2
SPBU	0.2236817	0.583764	0.625151300	2	2,771,017.6	28752971.4	75039439.9	128544098.	50,236,852.4
Pati	7	2	9	9	0	7	2	5	6
SPBU	0.1613549	0.394887	0.426581474	1	1,972,588.8	7461338.52	18260314.4	46241783.1	0.414.600.20
Kudus	1	8	1	0	0	/401338.32	8	40241/83.1	8,414,698.38
		Tota	ıl			102632872. 6	366397505	673157188	286,886,188. 11
		Nilai X dan	Y Iterasi 1			X	0.15246494 3	Y	0.544297099

Pada tabel 7 menunjukkan contoh perhitungan pada iterasi 1. Proses iterasi dilakukan hingga mencapai hasil yang optimal. Hasil yang optimal di tunjukan dari nilai x dan y yang memiliki nilai hampir sama. Pada tabel 8 dan tabel 9 menunjukan iterasi ke 13 dan iterasi ke 14.

Tabel 8. Iterasi 13

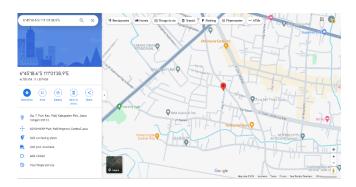
Nama	ïX	Χï	ï	Vi	ij	Vi CiXi/ Ji	Vi Ci Yi/ Ji	Ci Vi/ Ji	Vi Ci Ji
SPBU	-	0.9748701	0.44065505	19	4.660.510	-	195006027	200032827	39,198,837.6
Blora	0.0180384 24	23	0.44267597 98		4,660,512. 00	3608277.0 16	.3	.7	0
SPBU	-	0.4687367		33		-	96327060.	205503523	
Groboga n	0.1303145 73	84	0.35679084 60		2,221,872. 00	26780104. 01	65	.5	26,160,538.4 9
SPBU	0.25757334	0.9283552		17		54844833.5	197673759	212928997	
Remban g	3	81	0.34036119 49		4,263,104. 00	9	.2	.4	24,666,917.9 1
	0.37616877	0.2427344		31		78557631.1	50691720.	208836129	
SPBU Jepara	5	35	0.38934679 00		2,622,892. 80	4	08	.9	31,657,661.6 6
CDDII	0.22368177	0.5837641		29		856351986.	223490547	382843888	1,686,758.26
SPBU Pati		77	0.02099015 10		2,771,017. 60	4	8	8	
SPBU	0.16135490	0.3948877		10		15762270.7	38575387.	97686963.	3,983,240.37
Kudus	5	67	0.20192958 44		1,972,588. 80	6	01	78	
		Tota	1			975128340.9	2813179432	4753427330	127,353,954. 29
		Nilai X dan Y	Iterasi 13			X	0.2051421 58	Y	0.59182127 7

Pada iterasi ke 13 dan 14 memiliki hasil yang hampir sama menunjukan bahwa iterasi tersebut optimal. Hasil dari iterasi 13 memiliki nilai X sebesar 0.205142158 dan nilai Y sebesar 0.591821277. Sedangkan pada iterasi ke 14 memiliki nilai X sebesar 0.205741349 dan nilai Y sebesar 0.591527456. Dari hasil kedua iterasi tersebut menghasilkan titik koordinat yang hampir sama maka proses iterasi dilakukan pemberhentian. Untuk koordinat terpilih berdasarkan total biaya dimana pada iterasi 13 memiliki biaya sebesar 127,353,954.29 sedangkan pada iterasi 14 memiliki biaya sebesar 127,351,252.25. Dapat dilihat bahwa pada iterasi 14 memiliki biaya yang lebih rendah maka koordinat yang terpilih adalah koordinat pada iterasi 14 dengan nilai sebesar 0.205741349 dan nilai Y sebesar 0.591527456.

					Tabe	1-9. Ita	eras	i 14						
Na	ma X	i '	Yi	Ji	Vi	Ci		Vi CiX	i/ Ji	Vi Ci Ji	Yi/	Ci Vi	/ Ji	Vi Ci Ji
CDDII	-	0.974	48701 0.44	332379	19	4,660,5	512.	-		194721	.06	199740)52	39,256,201
SPBU Blora	0.0180 24	0384 23	87			00		360300 24)4.3	9.4		4.3		.79
SPBU	-	0.468	87367 0.35	732479	33	2,221,8	372.	-		961831	18.	205196	543	26,199,688
Groboga	an 0.1303	3145 84	80			00		267400 39)86.	71		8.7		.79
SPBU	0.2575733	0.9283552	0.3405938	4 17	4,2	63,104.	548	07371.	1975	538735	212	78355	24,6	583,778.4
Remba	43	81	16		00		18		.8		3.8			6
ng SPBU Jepara	0.3761687 75	0.2427344 35	0.3887309 79	1 31	2,6	22,892.	786 14	82091.	5077 71	72031.	209	16699	31,6	607,585.3 0
SPBU	0.2236817	0.5837641	0.0202146	9 29	2,7	71,017.	889	202329	2320	063822	397:	53008	1,62	24,443.32
Pati	7	77	91		60		.4		9		47			
SPBU	0.1613549	0.3948877	0.2017427	3 10	1,9	72,588.	157	76869.	3861	11114.	977	77439.	3,97	79,554.58
Kudus	05	67	41		80		48		81		61			
			Total					1008125	570	2898464	299	4899965	795	127,351,252. 25
		Nilai X d	lan Y Iterasi 1	4				X		0.20574	134	Y		0.591527456

Hasil dan Pembahasan

3.3


Pada metode *gravity location models* terdapat faktor-faktor yang menjadi perhitungan diantaranya adalah jumlah gerai dan biaya distribusi. Meskipun lokasi fasilitas yang baru merupakan lokasi yang terbaik berdasarkan *gravity location models*, lokasi tersebut tidak serta-merta merupakan lokasi yang akan digunakan oleh perusahaan Kedepannya. Seperti disebutkan sebelumnya, metode *gravity location models* merupakan metode sederhana yang dapat digunakan dalam mempertimbangkan keputusan yang akan diambil.

Pada tabel 10 menunjukkan hasil analisa lokasi baru untuk penentuan lokasi sub gudang pada PT XYZ menggunakan metode *gravity location models*.

Tabel 10. Hasil Lokasi Terpilih

Lokasi	Koordinat X	Koordinat Y
PT XYZ	-6.96089565	110.4359309
Koordinat Iterasi	0.205741349	0.5915274555
Koordinat Terpilih	-6.755154302	111.0274584

Apabila koordinat tersebut dicari melalui Google map maka titik tersebut berada pada Gg. 7, Puri, Kec. Pati, Kabupaten Pati, Jawa Tengah. Gambar 2 menunjukan lokasi terpilih melalui *Google map*:

Gambar 1. Lokasi Terpilih

Pada penelitian didapatkan lokasi optimal dari sub gudang terpilih berada pada lokasi SPBU yang beralamat pada Jalan Pemuda No.496, Sarirejo, Kec. Pati, Kabupaten Pati, Jawa Tengah 59118. Selanjutnya dilakukan perbandingan biaya apabila pengiriman dikirim melalui PT XYZ dan lokasi sub gudang terpilih. Pada gambar 3 merupakan grafik perbandingan jarak antara kedua lokasi tersebut :

Gambar 3. Grafik Biaya Distribusi

Dapat dilihat berdasarkan pada gambar 3 biaya yang harus dikeluarkan perusahaan apabila pengiriman melalui PT XYZ sebesar 1,140,023,578.58 dalam sebulan. Sedangkan apabila dikirim melalui sub gudang memiliki biaya sebesar 1,048,205,925.78 dalam sebulan.

4. KESIMPULAN

Pada penelitian ini didapatkan hasil lokasi paling optimal didirikannya sub gudang dengan menggunakan metode *Gravity Location Models* bahwa lokasi paling optimal berada pada koordinat X sebesar 0.205741349 dan koordinat Y sebesar 0.591527456 yang dihasilkan dari iterasi 14. Lokasi tersebut berada pada Gang. 7, Puri, Kec. Pati, Kabupaten Pati, Jawa Tengah dengan lokasi SPBU terdekat yaitu SPBU yang beralamat pada Jalan Pemuda No.496, Sarirejo, Kec. Pati, Kabupaten Pati, Jawa Tengah 59118. Selanjutnya berdasarkan perhitungan biaya distribusi terjadi efisiensi biaya distribusi apabila PT XYZ mendirikan pada SPBU yang berlokasi di Pati. Perusahaan dapat melakukan efisiensi biaya sebesar 91,817,652.80 dalam sebulan. Biaya tersebut didapatkan dari biaya distribusi yang diperlukan dalam menyalurkan produk gerai ke beberapa daerah di Jawa Tengah bagian timur yang meliputi Blora, Kudus, Grobogan, Jepara, Pati, dan Rembang dengan total sebanyak 115 gerai. Untuk biaya distribusi dari PT XYZ sebesar 1,140,023,578.58 dalam sebulan. Biaya tersebut meliputi biaya ongkos angkut dari PT XYZ ke gerai tujuan. Sedangkan apabila dikirim melalui sub gudang memiliki biaya sebesar 1,048,205,925.78 dalam sebulan, biaya tersebut meliputi biaya ongkos angkut dari PT XYZ ke sub gudang material handling, dan biaya distribusi dengan sewa pola tarif ke setiap gerai tujuan.

DAFTAR PUSTAKA

- A. A. Prasetyo, W. S. & Alfandito, A., 2018. "Perancangan Tata Letak Bahan baku dengan Metode Gravity Location Model (GLM) di PT.Pertani (Persero) Cabang D.I Yogyakarta. *Jurnal Disprotek*, pp. vol. 9, no. 1, pp. 1-6.
- Anwar, S., 2011. Manajemen Rantai Pasokan (Supply Chain Management): Konsep dan Hakikat. *Jurnal Dinamika Informatika*, pp. vol. 3, no. 2, pp. 1-7. .
- Argaditia Mawadati, J. S., 2021. Penentuan Lokasi Fasilitas Gudang dengan Metode Gravity Location Models. *Journal of Industrial and Engineering System (JIES)*.
- Kartika, L. G. S. I., Y. & Andrewan, A. A., 2017. Penentuan Lokasi Fasilitas Supply Chain Dengan Metode Gravity Location Models. *E-Proceedings KNS&I STIKOM BALI*, pp. 425-430.
- Mawadati, J. S. P. d. R. A. S., 2020. Penentuan Lokasi Fasilitas Gudang dengan Metode Gravity Location Models. *Journal of Industrial and Engineering System (JIES)*, pp. vol. 1, no. 2, pp. 121-125.
- Paillin, D. B. &. D. M. T., 2012. Metode Center of Gravity dan Point Rating (Studi Kasus Di Kabupaten Seram Bagian Barat).. *Arika*, 06(2)..