Implementasi Nanofluid Silika-Etilena Glikol (SiO₂-C₂H₆O₂) pada Sistem Pendingin Mesin Mobil
Abstract
Perkembangan nanoteknologi telah banyak dikembangkan untuk meningkatkan system pendingin radiator kendaraan. Eksperimen nanofluida dari air, SiO2-C2H6O2 hasilnya dibandingkan dengan penelitian lain pada mesin kendaraan. Penelitian ini bertujuan untuk mengevaluasi pengaruh laju aliran fluida terhadap efektivitas kinerja radiator dengan menggunakan nanofluida yang terdiri dari campuran air dengan nano silika SiO2-C2H6O2 Penelitian diawali melalui pengujian bahan silika secara marfologi menggunakan SEM untuk mengetahui struktur mikro. Selanjutnya mencampur nano partikel silika SiO2- C2H6O2) 0,5 gram dengan air, di proses menggunakan magnetic stirer selama 8 jam dan di endapkan selama 24 jam. Setelah terpisah dengan endapan, nanofluida tersebut di uji kinerja menggunakan rangkaian alat uji yang terdiri dari radiator, flowmeter, pompa air, instalasi pipa, heater dan tangki reservoir. Pengambilan data dilakukan pada suhu masuk dan keluar untuk mengtahui penurunan suhu. Variasi kecepatan aliran fluida sebesar 1.8, 3, dan 6 LPM. Hasil penelitian menunjukkan bahwa penurunan suhu terbaik antara media air murni dan penambahan nano partikel SiO2-C2H6O2 dengan variasi laju aliran fluida yaitu pada media penamban nano partikel SiO2-C2H6O2 dengan rata – rata penurunan suhu sebesar 0,292 oC. Sedangkan untuk media ari murni rata – rata penurunan suhu sebesar 0.208 oC.Dari hasil pengujian yang dilakukan penambahan nano partikel SiO2-C2H6O2 mampu membuang panas ke lingkungan lebih baik di bandingkan dengan air murni.
Keywords
Full Text:
PDFReferences
Abbasian Arani, A. A., & Amani, J. (2012). Experimental study on the effect of TiO 2-water nanofluid on heat transfer and pressure drop. Experimental Thermal and Fluid Science, 42, 107–115. https://doi.org/10.1016/j.expthermflusci.2012.04.017
Alazwari, M. A., & Safaei, M. R. (2021). Non-isothermal hydrodynamic characteristics of a nanofluid in a fin-attached rotating tube bundle. Mathematics, 9(10). https://doi.org/10.3390/math9101153
Bock Choon Pak, Y. I. C. (2013). Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide. Experimental Heat Transfer : A Journal of , Thermal Energy Transport , Storage , and Conversion, January 2013, 37–41.
Devireddy, S., Mekala, C. S. R., & Veeredhi, V. R. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78(November 2017), 121–126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002
Elsaid, A. M. (2019). Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 108, 104263. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.009
Heris, S. Z., Etemad, S. G., & Esfahany, M. N. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529–535. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
Jung, J. Y., Oh, H. S., & Kwak, H. Y. (2006). Forced convective heat transfer of nanofluids in microchannels. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1–6. https://doi.org/10.1115/IMECE2006-13851
Koçak Soylu, S., Atmaca, İ., Asiltürk, M., & Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157. https://doi.org/10.1016/j.applthermaleng.2019.113743
Kumar Rai, P., Kumar, A., & Yadav, A. (2020). Experimental Investigation of Heat Transfer Augmentation in Automobile Radiators using Magnesium Oxide/Distilled Water-Ethylene Glycol based Nanofluid. Materials Today: Proceedings, 24, 1525–1532. https://doi.org/10.1016/j.matpr.2020.04.472
Li, X., Wang, H., & Luo, B. (2021). The thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125968. https://doi.org/10.1016/j.colsurfa.2020.125968
Makau Kimulu, A., Nduku Mutuku, W., & Muthama Mutua, N. (2018). Car Antifreeze and Coolant: Comparing Water and Ethylene Glycol as Nano Fluid Base Fluid. International Journal of Advances in Scientific Research and Engineering, 4(6), 17–37. https://doi.org/10.31695/ijasre.2018.32748
Murti, M. R. (2012). Laju Pembuangan Panas Pada Radiator Dengan Fluida Campuran 80% Air Dan 20% Rc Pada Rpm Konstan. Jurnal Energi Dan Manufaktur, 3(1).
Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., & Seifi Jamnani, M. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer, 38(9), 1283–1290. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001
Said, Z., El Haj Assad, M., Hachicha, A. A., Bellos, E., Abdelkareem, M. A., Alazaizeh, D. Z., & Yousef, B. A. A. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112(May), 183–194. https://doi.org/10.1016/j.rser.2019.05.052
Senthilkumar, G., Pavan Kumar, P., & Sai Gowtham, R. (2020). Performance of radiator by using SiO2 nano fluids. International Journal of Ambient Energy, 41(9), 1038–1040. https://doi.org/10.1080/01430750.2018.1501746
Tang, C., Li, X., Yin, F., & Hao, J. (2017). The performance improvement of aramid insulation paper by nano-SiO2 modification. IEEE Transactions on Dielectrics and Electrical Insulation, 24(4), 2400–2409. https://doi.org/10.1109/TDEI.2017.00656
DOI: http://dx.doi.org/10.36499/jim.v20i2.12545
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Address : :
Fakultas Teknik Universitas Wahid Hasyim

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.