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Abstrak 

 
Hampiran Riemann merupakan pendekatan untuk dapat melihat fenomena aliran gelombang 

permukaan dengan cara merambatkan informasi di arah sepanjang garis karakteristiknya. 

Secara ilmu hidrostatik, pemecahan Riemann     (Riemann solver ) berawal dari soal 

Riemann   (Riemann problem), yang merupakan masalah kejut dalam aliran mampat, aliran 

tak bertahanan (compressible inviscid flow) yang mana G.F. Bernhard Riemann mencoba 

menyelesaikannya pada tahun 1858. Persoalan ini dalam pustaka aerodinamika dikenal 

sebagai soal tabung kejut (shock tube problem) di mana alirannya dimodelkan sebagai 

persamaan Euler (Soegandar, 2004).  Bentuk persamaan ini memungkinkan penyelesaian 

langsung secara analitik eksak dari aliran tak bertahanan dan tak-tunak. Gagasan dasar 

dari persoalan Riemann kemudian  dikembangkan kurang lebih 101 tahun kemudian oleh 

S.K. Godunov (1959) dengan cara penyelesaian analitik, di mana persamaan Euler hanya 

berlaku untuk daerah setempat (local region ) dari medan aliran (Toro, 1999). 

 Dengan merakit kepingan-kepingan penyelesaian analitik eksak maka diperoleh sintesis 

seluruh medan aliran. Operasionalisasi dari falsafah Godunov ini adalah dengan membagi-

bagi medan fisik aliran menjadi sel-sel yang saling merapat, sehingga persamaan Euler 

dapat diselesaikan secara analitik eksak untuk masing-masing unsur. Parameter aliran 

dilambangkan sebagai vektor arus U dan dianggap tetap nilainya di dalam sel. Dengan 

demikian pada antar muka dua unsur yang berdekatan dapat memiliki nilai parameter arus 

U yang berbeda. Dalam lingkup fisika aliran, perbedaan yang kecil ini merupakan kejut-

kejut lembut (infinitesimal shock or wavelets) yang dapat dimuluskan, tetapi bila terjadi 

perbedaan yang besar akan menandai adanya kehadiran kejut. Dengan demikian falsafah 

Godunov sangat berbeda dengan falsafah numerik yang telah dikenal sebelumnya di mana 

persamaan St. Venant dikepingkan sebagai selisih hingga, unsur hingga atau volume 

hingga, di mana seluruh penyelesaian dari persamaan diferensial atau integral pengatur 

sekaligus menyapu seluruh ruang aliran.  

 
Kata kunci : Riemann solver , Riemann problem, local region, vektor arus U, shock 

 

Pendahuluan 

Hampiran dengan cara unsur hingga 

(finite element method) dimana tatar-aliran (flow 

domain) dikepingkan menjadi unsur-unsur 

hingga (finite element) yang tumpang tindih dan 

rapat (tidak bercelah) dan persamaan St. Venant 

diberlakukan untuk setiap unsur hingga. Unsur-

unsur hingga terdiri dari titik-titik unsur yang 

disebut simpul (nodes). Kisar-kisar hidrodinamik 

dan parameter aliran (kemiringan dasar saluran, 

kekerasan, dst) yang dikandung oleh persamaan 

diferensial diinterpolasikan untuk setiap titik 

dalam unsur dengan polynomial. Hasil interpolasi 

lempang atau kuadratik  disebut fungsi rupa 

(shape function), fungsi coba (trial function), 

atau fungsi basis (basis function). Untuk aliran 

tiga matra, maka tatar aliran dikepingkan menjadi 

unsur volume; untuk aliran dua-matra menjadi 

keping dua matra, dan untuk tatar aliran satu-

matra. Kelebihan utama dari CUH adalah 

kemampuan untuk menangani batas yang tidak 

teratur (aliran dua matra) dan pemurnian kisi 

(grid refinement). Cara volume hingga, pada 

awalnya dikembangkan sebagai perluasan dari 

CSH, dimana volume hingga merupakan volume 

integrasi  dari kemalaran dan momentum. CVH 

berbeda dengan cara-cara numerik lainnya, 

dimana dapat disimak dengan jelas azas 

kekekalan fisika dengan algoritma, dan karena itu 

mudah dipahami .  

Perlu dicatat bahwa persamaan 

diferensial aliran termasuk kelompok persamaan 
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hiperbolik nir-lempang dapat mengandung 

ketakmulusan (discontinuity) pada tatar batas 

aliran (flow domain boundary),  dan 

ketakmulusan ini dirambatkan langgeng 

(permanent) ke dalam tatar-aliran. Batas yang 

mulus (smooth) juga tidak menjamin bahwa 

aliran dalam tatar-aliran akan terus mulus. Sifat 

matematika persamaan hiperbolik ini tepat sama 

dengan kenyataan empirik. Jadi persamaan St. 

Venant yang harus membatasi kemulusan aliran 

untuk penyelesaiannya, mengandung kelemahan 

dengan kenyataan empirik . Persamaan St. 

Venant sendiri dalam bentuk klasik diungkapkan 

sebagai persamaan diferensial, yang menuntut 

keberturunan (differentiability) dari kisar-kisar 

aliran hidrodinamik yang bergantung pada kisar 

ruang dan waktu (x,y,z,t),  rumus kerja klasik ini 

disebut bentuk nir-konservatif atau nir-

divergen. Dalam bentuk persamaan klasik, kisar-

kisar aliran dinyatakan sebagai kisar primitif 

(primitive variables), sehingga ketakmulusan 

(discontinuity) kisar membuat persamaan St. 

Venant gugur. Bila terjadi gelombang kejut 

misalnya, maka kisar primitif  aliran tak mulus, 

maka gugurlah penggunaan persamaan pengatur 

St. Venant klasik. Tetapi, kita dapat merekayasa 

persamaan St. Venant klasik menjadi bentuk 

konservatif atau bentuk divergen. Dalam 

bentuk konservatif atau divergen, maka kisar-

kisar dinyatakan sebagai vektor arus yang mulus, 

meskipun kisar primitifnya tidak mulus, misalnya 

bila terjadi kejut.  

Karena sifat konservatif dari arus 

debit , momentum dan energi, maka bentuk 

konservatif merupakan bentuk persamaan St. 

Venant yang berlaku pada jenis dan ragam aliran 

hidrodinamik untuk model aliran tak bertahanan. 

Untuk aliran nyata, maka redaman aliran 

meningkat entropi termodinamik. Gesekan 

dinding dan gesekan antar butir fluida, serta 

pengaruh gaya gravitasi merupakan sumber 

momentum dan energi. Jadi gesekan pada 

dinding dan antar fluida dan gravitasi 

mengakibatkan arus momentum dan energi tidak 

seluruhnya konservatif, tetapi arus massa tetap 

konservatif. Pengaruh gaya gravitasi g, dan 

gesekan keduanya dapat ditaksirkan sebagai 

sistem yang tidak terkucil (nonisolated sistem) 

dan dapat diungkakan sebagai sumber atau sumur 

dalam persamaan konservatif St.Venant.  Jadi 

gesekan adalah sumur momentum dan energi 

yang hilang pada gelombang kejut adalah sumur 

yang menyerap energi dari sistem aliran, dan 

gravitasi adalah sumber (sumur) momentum dan 

energi yang menambah (mengurangi) momentum 

dan energi aliran. 

Dalam bentuk persamaan pengatur 

yang modern, keduanya ditempatkan di ruas 

kanan, sehingga perannya dari segi fisika aliran 

menjadi jelas yaitu sebagai sumber (source) atau 

sumur (sink). Dengan mencetak persamaan St. 

Venant dalam bentuk konservatif atau 

divergen, maka gejala kejut akan muncul sebagai 

bagian dari penyelesaian, tanpa campur tangan 

pemrogram. Cara penyelesaian dimana kejut 

merupakan bagian penyelesaian disebut bagan 

numerik penangkap kejut (shock capturing 

numerical scheme) yang merupakan lawan cara 

klasik yaitu pencocokan kejut (shock fitting 

method). 

Pada cara klasik ini, lokasi kejut 

harus dikatahui terlebih dahulu, kemudian pada 

lokasi tersebut diterapkan persamaan pengatur 

kejut. Jadi pada cara ini terdapat dua persamaan 

pengatur yang mewakili aliran mulus yang 

dipisahkan oleh persamaan pengatur kejut. Bagan 

numerik cara klasik ini nir-konservatif dan 

menggunakan kisar-kisar primitif. Bagan 

numerik penangkap kejut menggunakan kisar-

kisar arus (flux) dimana massa, momentum atau 

energi dikonservasikan dan kisar-kisar arus 

berketurunan. Sesudah kisar-kisar arus 

dikembalikan kepada kisar primitif, maka akan 

dapat disimak apakah aliran mulus dan tak 

mulus. 

Tuntutan setiap kisar anu dalam 

persamaan klasik St.Venant adalah keturunan 

(differentiability requirement), maka hanya aliran 

berubah lambat laun (Fr<1) dapat dengan baik 

dimodelkan oleh persamaan ini. Bila terjadi 

katakmulusan (discontinuities) dalam kisar aliran 

yang diwakili oleh vektor U=(u,v,h), maka 

hipotesis tentang kemulusan atau secara 

matematis keberturunan (differentiability) 

dilanggar, sehingga persamaan St. Venant dalam 

bentuk asli (klasik) tidak dapat digunakan. Bila 

kisar primitif diganti dengan kisar arus (flux 

variable), maka kita peroleh suatu bentuk 

persamaan baru, dimana hukum dasar kekekalan 

berlaku dalam bentuk diferensial harkat satu . 

Gejala kejut tersembunyi di dalam 

kisar arus, akan muncul dengan sendirinya-

setelah kisar-kisar arus dikembalikan kepada 

kisar primitif sebagai bagian dari penyelesaian, 

sehingga kejut dapat disimulasikan tanpa harus 

mengetahui dimana dan kapan kejut akan terjadi. 
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Pendekatan ini disebut cara penangkapan kejut 

(shock capturing method). Bentuk persamaan 

pengatur yang baru ini juga disebut bentuk 

divergensi, bentuk kekal, atau bentuk konservatif. 

 

 

Metodologi  

Metodologi dari penelitian ini 

mendasarkan  dengan mencetak persamaan St. 

Venant dalam bentuk konservatif, kemudian 

mengintegrasikan menurut theorema Gauss, 

maka dalam bentuk integral ini memang suku-

suku konvektif dan suku laju lokal untuk semua 

jenis dan ragam aliran yaitu aliran laun lunak dan 

tak lunak, aliran deras dengan kejut yang jeda 

atau bergerak. Dengan memilih derap waktu, t 

cukup kecil, sehingga sasaran agar suku sumber 

menjadi cukup kecil terhadap suku-suku lainnya, 

dalam persamaan karakteristik disebut 

ketakubahan semu Riemann, yang berarti bahwa 

arus kanan tidak tepat sama dengan nol tetapi 

cukup kecil untuk diabaikan dalam model. Pada 

umumnya, bila kaidah CFL dipenuhi, maka suku 

sumber menjadi kecil. Ketakubahan semu 

Riemann inilah yang merupakan basis hampiran 

untuk memodelkan aliran semesta (universal flow 

model). Pembuktian matematika yang rongkah 

(robust mathematical proof) adalah di luar 

naskah ini.  

Masalah yang paling fundamental 

sekarang adalah bahwa pemodelan daulat aliran 

dengan sel-sel kecil yang memenuhi kaidah 

kemantapan CFL adalah seolah aliran tak 

bertahanan dan seolah tidak dipengaruhi oleh 

gravitasi. Bila ini benar, maka dari segi logika, 

rakitan sel-sel yang melingkupi seluruh daulat 

aliran tak bertahanan dan tidak dipengaruhi 

gravitasi dan tidak dipengaruhi gesekan dinding. 

Maka kita akan nantikan suatu hasil simulasi 

yang jauh bebeda dari kenyataan. Tetapi, uji 

numerik membuktikan bahwa hasil simulasi 

cukup cermat dibandingkan dengan aliran nyata 

yang dihitung dengan cara lain yang teruji. 

Penjelasan dari keganjilan ini adalah bahwa 

pengaruh gesekan dan grafitasi tidak seluruhnya 

sirna bersama dengan dihilangkannya suku 

sumber. Sebagian dari pengaruh ini seharusnya 

tersembunyi dalam suku konvektif dan kelajuan 

gelombang. Memang dalam ungkapan laju 

gelombang tersembunyi pengaruh gravitasi g dan 

kedalaman aliran h dalam ungkapan c= gh , di 

mana h sendiri mencerminkan  pengaruh gesekan 

dinding dan gesekan antar butir fluida. 

 

Analisis 

Pemecahan Riemann     (Riemann 

solver) berawal pada persoalan Riemann   

(Riemann problem), yaitu persoalan gelombang 

kejut yang terjadi pada persamaan aliran 

permukaan mampat tak bertahanan yang diambil 

berdasarkan konsep bendung runtuh (Toro, 

1999), dengan sebuah nilai awal. 

Kondisi nilai awal untuk satu matra dapat 

dinyatakan sebagai  : 

 

(1) 

 

 

Berdasarkan persamaan pengatur St. 

Venant dua matra y) masih mengandung hukum 

kemalaran.  Penempatan awal UL dan UR dapat 

dinyatakan sebagai : 

 

(2) 

UL dan UR merupakan konstanta vektor 

yang menunjukkan kondisi pada    t = 0, untuk 

sisi kiri dan sisi kanan dari x = 0 di mana  x = 0 

adalah posisi sekat pemisah (bendung). Untuk  

pendekatan ini  notasi partikel komponen 

kecepatan dapat dinyatakan sebagai  uL, vL, uR, 

vR. Pada hampiran Riemann terdapat empat buah 

kemungkinan pola gelombang muncul, yang 

dapat diilustrasikan pada Gambar 1berikut  

       a)                                                         b) 
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Gambar  1 :  Pola gelombang yang 

memungkinkan timbul pada 

persamaan aliran. 

 

Untuk masing-masing kasus di atas 

terdapat tiga macam gelombang di sisi kiri, di sisi 

kanan dan di daerah peralihan (tengah). Untuk 

kasus (a) dalam Gambar 1 gelombang sisi kiri 

merupakan penghalusan dan gelombang sisi 

kanan adalah gelombang kejut. Untuk kasus (b)  

dalam Gambar 1 di sebelah kiri adalah 

gelombang kejut dan sebelah kanan adalah 

gelombang penghalusan. Untuk kasus  (c)  dalam 

Gambar 1 pada kedua sisinya merupakan 

penghalusan dan untuk kasus (d) pada Gambar 1 

kedua sisinya merupakan gelombang kejut. 

Pada umumnya, di sisi kiri dan di sisi 

kanan gelombang merupakan kejut atau 

penghalusan, sedangkan gelombang tengah 

sebagai gelombang peralihan atau geser (shear 

wave), di mana akan memotong komponen 

kecepatan tangential – v. Dengan demikian 

gelombang peralihan akan meningkat dengan  

adanya   persamaan momentum – y yang 

dinyatakan dengan persamaan (1). Persamaan (1)  

dapat dilukiskan oleh Gambar 2 

Dalam pendekatan ini terdapat 3 buah 

rumpun gelombang yang berhubungan dengan 

nilai Eigen 1, 2 dan 3. Masing-masing 

gelombang  tersebut dipisahkan oleh 4 buah  

konstanta yang dinyatakan sebagai :  uL , u*L , 

u*R , uR.  

Daerah di antara sisi kiri dan sisi kanan 

disebut “daerah bintang” dan dibagi menjadi dua 

buah sub daerah. Penyelesaian dari masalah ini 

adalah hampir sama dengan cara menyelesaikan  

U(x,t), yang mana U tergantung pada 

perbandingan x/t. 

 

 

 

 

 

 

 

 

 

Gambar 2  Struktur  penyelesaian  umum 

dengan hampiran Riemann 

 

 

 

 

1. PERSAMAAN TAK UBAH RIEMANN   

Persamaan  umum  linear semu hiperbolik 

sesuai dengan persamaan (2.78) di atas dalam 

satu matra dapat dinyatakan sebagai : 

    Wt + A(W) Wx = 0                                                                           

(3) 

Vektor W  dalam persamaan (3.3) tidak 

diketahui dan dapat dinyatakan    sebagai : 

W = [w1 , w2 , …….. , wm]
T
                                                                            

(4) 

Hampiran ini mempertimbangkan gelombang 

yang dihubungkan dengan i(w) sebagai 

karakteristik lapangan. Nilai Eigen i  yang 

berhubungkan dengan vektor Eigen dapat 

dinyatakan sebagai : 

R
(i)

 = [r1
(i)

 , r2
(i)

 , r3
(i)

  ……… rm
(i)

]
T
                                                                

(5) 

Vektor variabel terikat W pada pemakaiannya 

digunakan sebagai variabel  kekal. Persamaan 

kemalaran yang ditampilkan dalam bentuk 

linear-semu  ini dinyatakan sebagai matriks 

Jacobian  . Generalisasi dari pendekatan ini 

berupa potongan struktur sebuah gelombang  

yang dapat dinyatakan dengan persamaan 

diferensial, sebagai berikut : 

 

(6) 

 

 

 

 

Suku-suku dari persamaan tersebut 

menyatakan rasio dari sebuah  perubahan dws 

dari sebuah besaran ws terhadap masing-

masing komponen rs
(i)

 dari vektor eigen R
(i)

 

yang berhubungan dengan i (w) dalam 

rumpun gelombang. 

Pembahasan 

Pada model ini akan diperlihatkan 

profil muka air dua matra dimana secara teknis 

menggunakan pendekatan Riemann dengan  

konsep uji pertama.  Pengembangan dari medel 

numerik satu matra menjadi dua matra akan lebih 

banyak melibatkan kondisi batas (boundary 

condition) , dimana kondisi batas tersebut dapat 

dilihat dari geometri ruang yang akan kita 

gunakan, yaitu panjang saluran (kolam) , lebar 

saluran (kolam), letak dinding sekat dan pintu 

control bendung, sehingga secara teknis akan kita 
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pertimbangkan 10 dinding pembatas yang 

langsung berhubungan dengan partikel air 

dinding tersebut.   

Melalui pendekatan Riemann maka 

model ini dapat kita kembangkan untuk tiga 

kondisi dimana kondisi pertama pada saluran 

hilir kering , sedangkan kondisi kedua pada 

saluran hilir berair dimana kedua aspek pada 

desain tata ruang yang simetri. Sedangkan untuk 

kondisi ketiga akan dimodelkan pada tata ruang 

yang tidak simeteri (asimetri) 

 

Kondisi Awal 

Kondisi  awal model adalah elevasi 

muka air, debit aliran atau kecepatan pada awal 

hitungan yaitu diambil sebesar 0,5m/det, yang 

dapat diperoleh dari pengukuran elevasi muka air 

bendung saat pintu bendung ditutup, kapasitas 

tampungan suatu kolam bendung didesain 

berdasarkan debit rencana pengisian yang akan 

memberikan kedalaman tertentu dalam hal ini 

sebagai kedalaman awal 1,0 meter. Sedangkan 

posisi titik diskontinyu pada x=0 yaitu pada 

posisi pintu bendung ditempatkan pada tengah 

panjang kolam sebagai control awal elevasi muka 

air banjir disebelah hulu diskontinyu.  

Kondisi Batas  

Secara umum kondisi batas pada 

konsep model ini akan diperlihatkan pada 

gamabar dibawah ini: 

Kondisi batas pada Model 

Bendung Runtuh 
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Secara umum daerah model akan 

dibagi menjadi dua yaitu daerah hulu (sebelah 

kanan pintu) dan daerah hilir (sebelah kiri pintu), 

masing -masing daerah dibatasi oleh dinding.  

Untuk daerah hulu  batasannya meliputi dinding 

1,2 ,3, 4 dan 5 sedangkan untuk daerah hilir 

batasannya meliputi dinding 6, 7, 8, 9 dan 10.  

Kondisi Batas Hulu 

Selain posisi dinding diatas kondisi 

batas hulu secara spesifik tergantung pada letak 

dan  jumlah pintu serta sekat pemisah yang 

ditetapkan. Untuk praktisnya dalam model ini 

akan ditinjau pintu control tunggal dengan dua 

dinding sebagai sekat pemisah. 

Kondisi Batas Hilir 

Seperti penjelasan pada batas hulu 

bahwa posisi dan jumlah pintu  serta sekat akan 

mempengaruhi dari kondisi batas hilir. Kondisi 

batas hilir juga diberikan oleh elevasi genangan 

pada tampungan hilirnya yang secara alamiah 

didapatkan sebagai muka aliran dasar (base flow) 

yang mengalir secara konstan sepanjang tahun, 

diperoleh dari pengamatan muka air langsung 

dilapangan atau dengan perhitungan hidrograp 

aliran dasar sebagai base flow yang ada di suatu 

Daerah Aliran Sungai (DAS) yaitu ditetapkan 0,1 

meter.  

Faktor Sumber  

Dalam model numeric  dimasukkan 

beberapa aspek kondisi morfologi kolam atau 

sungai yang terbendung yang dimasukkan  
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sebagai faktor sumber, dimana 

meliputi faktor kekasaran dasar lantai saluran 

peluncur dengan angka manning (Cn) adalah 

0,003 dan kemiringan dasar lantai diambil 0.0005 

. 

       Model Simetri Hilir Berair 

Pada model ini memperlihatkan pola 

muka air pada dua matra secara jelas, dimana 

terbagi dalam jaring-jaring (volume tilik) sesuai 

pembagian sel tiap meter persegi. Karena 

pertimbangan teknis operasional model maka 

terdiri dari 40x40 sel atau terdiri dari 1600 

volume tilik yang akan memberikan nilai 

kedalaman  air.  

Kasus aliran bendung runtuh dua matra  

pada suatu kolam  ini akan menggunakan konsep 

uji pertama pada pendekatan Riemann, dimana  

hasil perhitungan model muncul perambatan 

kejut yang cukup kuat terjadi pada sisi kanan dan 

perambatan mulus dengan kecepatan sonik 

(aliran kritik) pada sisi kiri . Peristiwa ini cukup 

penting dan menyiratkan bahwa nilai eigen 1=u-

a  akan berubah dari nilai negatif ke nilai positif  

yang ditandai dengan arah gerak perambatan 

gelombang dari sisi kiri melalui daerah peralihan 

(x=0)  menuju ke sisi kanan, sehingga secara 

jelas perubahan ini akan membawa nilai eigen 1  

melalui nilai nol pada posisi pintu bendung atau 

pada posisi peralihan dimana x = 0 pada posisi 

kontrol aliran pada pintu bendung. 

Pada model simetri hilir berair akan 

ditinjau dan diamati pada waktu 2,3,4 dan 5 detik 

setelah pintu bendung dibuka secara mendadak. 

Pada kondisi pengamatan awal pada 2 detik 

setalah pintu bendung dibuka maka akan terjadi 

aliran mulus pada hulu bendung dan terjadi 

loncatan air walau kecil. Pada waktu pengamatan 

ini  muka kejut akan terbentuk sejauh 10 meter 

dari pusat diskontinyu  dengan perambatan 

simetri kearah hilir. Kedalaman konstan pada 

hilir muka kejut merupakan tinggi genangan 

sebagai aliran dasar (base flow) yaitu 0,1 meter 

(lihat gambar 6.7a). Karena model simetris maka 

bentuk aliran mulus yang terjadi pada hulu pintu 

bendung juga terlihat  simeteri memusat pada 

sentral lebar pintu bendung dan menimbulkan 

loncatan yang simetris pula pada hilir pintu 

bendung. 

Pada kondisi pengamatan kedua 

yaitu pada waktu 3 detik setelah pintu bendung 

dibuka maka aliran mulus yang terbentuk lebih 

fluktuatif dari kondisi pertama dengan  medan 

loncatan air terbentuk lebih luas dan lebih tinggi 

dari kondisi pertama (lihat gambar 3). 

Penyebaran loncatan air dalam dua matra terlihat 

jelas pola rayapannya dalam hal ini terlihat 

berolak simeteri dan berlanjut membentuk aliran 

kejut dengan muka kejut pada jarak 15 meter dari 

sekat dinding pemisah. 

Dalam dua matra pola aliran mulus 

akan semakin meluas pada bidang hulunya , 

karena model bangunan dibuat simeteri maka 

medan perluasan aliran mulus berbentuk setengah 

lingkaran dan semakin lama maka medan 

tersebut semakin meluas , demikian juga medan 

loncatan air maka akan mempunyai pola yang 

menyebar secara radial namun dengan pola 

kedalaman loncatan tetap karena debit aliran kita 

pertahankan sebesar  1 meter/det.  Untuk pola 

muka kejut  akan terus bergerak meluas 

membentuk setengah lingkaran dengan 

bertambahnya waktu dan ini dapat diamati pada 

kaki-kaki kejut yang terbentuk terhadap 

permukaan konstan yang ada sebesar 0,1 sebagai 

aliran base flow sebagai genangan awal (lihat 

gambar 4). 

 

 
Gambar 3  Model Bendung Runtuh Simetri Hilir  

Berair  2 dt 

 

 

 

 
Gambar 4  Model Bendung Runtuh Simetri Hilir  

Berair 3 dt 
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Gambar 5  Model Bendung Runtuh 

Simetri Hilir  Berair pada 4 dt 

 

Kesimpulan 

Dari  hasil uji numerik dan uji hipotetik  pada 

bagian depan maka didapat suatu grafik dari 

representasi hitungan yang muncul berdasarkan 

analisis model baik pada hasil model satu matra 

ataupun dari hasil model dua matra. Beberapa 

kesimpulan hasil uji numerik dan hipotetik  diatas 

maka dapat ditulis sebagai berikut : 

 

1. Gagasan Gadunov pada azasnya adalah 

mereduksi masalah global menjadi 

masalah lokal (reduction of global 

problem to a local one), sangat berbeda 

dengan semua pendekatan penyelesaian 

masalah ketakmulusan dengan 

membangun (construct) bagan 

penyelesaian global (menyeluruh) 

kemudian menerapkan kepada lokal. Jadi 

dalam penyelesaian jenis Godunov 

(Godunov’s type of solution), soal lokal 

berupa RP dipecahkan dengan 

menggunakan apapun teknik yang 

tersedia generic RS (Riemann Solver). 

Kemudian RS lokal ini dirakit menjadi 

RS global dengan rotasi matrix. Adapun 

soal lokal yang dipecahkan lokal adalah 

perkiraan arus (approximate flux), yang 

menerobos antarmuka sel volume hingga. 

2. Pada model bendung runtuh hilir berair 

maka akan muncul perambatan kejut 

cukup kuat yang akan terjadi pada sisi 

kanan dan perambatan mulus dengan 

kecepatan sonik (aliran kritik) pada sisi 

kiri . Peristiwa ini cukup penting dan 

menyiratkan bahwa nilai eigen  1 = u - a  

akan berubah dari nilai negatif ke nilai 

positif  yang ditandai dengan arah gerak 

perambatan gelombang dari sisi kiri 

melalui daerah peralihan (x=0)  menuju 

ke sisi kanan, sehingga secara jelas 

perubahan ini akan membawa nilai eigen 

1  melalui nilai nol pada posisi pintu 

bendung atau pada posisi peralihan 

dimana x = 0 atau 1 = u – a = 0 yang 

dapat ditulis u = a. 

 

 


