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Abstrak

Hampiran Riemann merupakan pendekatan untuk dapat melihat fenomena aliran gelombang
permukaan dengan cara merambatkan informasi di arah sepanjang garis karakteristiknya.
Secara ilmu hidrostatik, pemecahan Riemann (Riemann solver ) berawal dari soal
Riemann (Riemann problem), yang merupakan masalah kejut dalam aliran mampat, aliran
tak bertahanan (compressible inviscid flow) yang mana G.F. Bernhard Riemann mencoba
menyelesaikannya pada tahun 1858. Persoalan ini dalam pustaka aerodinamika dikenal
sebagai soal tabung kejut (shock tube problem) di mana alirannya dimodelkan sebagai
persamaan Euler (Soegandar, 2004). Bentuk persamaan ini memungkinkan penyelesaian
langsung secara analitik eksak dari aliran tak bertahanan dan tak-tunak. Gagasan dasar
dari persoalan Riemann kemudian dikembangkan kurang lebih 101 tahun kemudian oleh
S.K. Godunov (1959) dengan cara penyelesaian analitik, di mana persamaan Euler hanya
berlaku untuk daerah setempat (local region ) dari medan aliran (Toro, 1999).

Dengan merakit kepingan-kepingan penyelesaian analitik eksak maka diperoleh sintesis
seluruh medan aliran. Operasionalisasi dari falsafah Godunov ini adalah dengan membagi-
bagi medan fisik aliran menjadi sel-sel yang saling merapat, sehingga persamaan Euler
dapat diselesaikan secara analitik eksak untuk masing-masing unsur. Parameter aliran
dilambangkan sebagai vektor arus U dan dianggap tetap nilainya di dalam sel. Dengan
demikian pada antar muka dua unsur yang berdekatan dapat memiliki nilai parameter arus
U yang berbeda. Dalam lingkup fisika aliran, perbedaan yang kecil ini merupakan kejut-
kejut lembut (infinitesimal shock or wavelets) yang dapat dimuluskan, tetapi bila terjadi
perbedaan yang besar akan menandai adanya kehadiran kejut. Dengan demikian falsafah
Godunov sangat berbeda dengan falsafah numerik yang telah dikenal sebelumnya di mana
persamaan St. Venant dikepingkan sebagai selisin hingga, unsur hingga atau volume
hingga, di mana seluruh penyelesaian dari persamaan diferensial atau integral pengatur
sekaligus menyapu seluruh ruang aliran.

Kata kunci : Riemann solver , Riemann problem, local region, vektor arus U, shock

Pendahuluan

Hampiran dengan cara unsur hingga
(finite element method) dimana tatar-aliran (flow
domain) dikepingkan menjadi  unsur-unsur
hingga (finite element) yang tumpang tindih dan
rapat (tidak bercelah) dan persamaan St. Venant
diberlakukan untuk setiap unsur hingga. Unsur-
unsur hingga terdiri dari titik-titik unsur yang
disebut simpul (nodes). Kisar-kisar hidrodinamik
dan parameter aliran (kemiringan dasar saluran,
kekerasan, dst) yang dikandung oleh persamaan
diferensial diinterpolasikan untuk setiap titik
dalam unsur dengan polynomial. Hasil interpolasi
lempang atau kuadratik disebut fungsi rupa
(shape function), fungsi coba (trial function),
atau fungsi basis (basis function). Untuk aliran

tiga matra, maka tatar aliran dikepingkan menjadi
unsur volume; untuk aliran dua-matra menjadi
keping dua matra, dan untuk tatar aliran satu-
matra. Kelebihan utama dari CUH adalah
kemampuan untuk menangani batas yang tidak
teratur (aliran dua matra) dan pemurnian Kisi
(grid refinement). Cara volume hingga, pada
awalnya dikembangkan sebagai perluasan dari
CSH, dimana volume hingga merupakan volume
integrasi dari kemalaran dan momentum. CVH
berbeda dengan cara-cara numerik lainnya,
dimana dapat disimak dengan jelas azas
kekekalan fisika dengan algoritma, dan karena itu
mudah dipahami .

Perlu dicatat bahwa persamaan
diferensial aliran termasuk kelompok persamaan
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hiperbolik nir-lempang dapat mengandung
ketakmulusan (discontinuity) pada tatar batas
aliran  (flow domain boundary), dan
ketakmulusan  ini  dirambatkan  langgeng
(permanent) ke dalam tatar-aliran. Batas yang
mulus (smooth) juga tidak menjamin bahwa
aliran dalam tatar-aliran akan terus mulus. Sifat
matematika persamaan hiperbolik ini tepat sama
dengan kenyataan empirik. Jadi persamaan St.
Venant yang harus membatasi kemulusan aliran
untuk penyelesaiannya, mengandung kelemahan
dengan Kkenyataan empirik Persamaan St.
Venant sendiri dalam bentuk klasik diungkapkan
sebagai persamaan diferensial, yang menuntut
keberturunan (differentiability) dari kisar-kisar
aliran hidrodinamik yang bergantung pada kisar
ruang dan waktu (x,y,z,t), rumus kerja klasik ini
disebut bentuk nir-konservatif atau nir-
divergen. Dalam bentuk persamaan klasik, kisar-
kisar aliran dinyatakan sebagai kisar primitif
(primitive variables), sehingga ketakmulusan
(discontinuity) kisar membuat persamaan St.
Venant gugur. Bila terjadi gelombang kejut
misalnya, maka kisar primitif aliran tak mulus,
maka gugurlah penggunaan persamaan pengatur
St. Venant klasik. Tetapi, kita dapat merekayasa
persamaan St. Venant klasik menjadi bentuk
konservatif atau bentuk divergen. Dalam
bentuk konservatif atau divergen, maka Kisar-
kisar dinyatakan sebagai vektor arus yang mulus,
meskipun Kisar primitifnya tidak mulus, misalnya
bila terjadi kejut.

Karena sifat konservatif dari arus
debit , momentum dan energi, maka bentuk
konservatif merupakan bentuk persamaan St.
Venant yang berlaku pada jenis dan ragam aliran
hidrodinamik untuk model aliran tak bertahanan.
Untuk aliran nyata, maka redaman aliran
meningkat entropi termodinamik. Gesekan
dinding dan gesekan antar butir fluida, serta
pengaruh gaya gravitasi merupakan sumber
momentum dan energi. Jadi gesekan pada
dinding dan antar fluida dan gravitasi
mengakibatkan arus momentum dan energi tidak
seluruhnya konservatif, tetapi arus massa tetap
konservatif. Pengaruh gaya gravitasi g, dan
gesekan keduanya dapat ditaksirkan sebagai
sistem yang tidak terkucil (nonisolated sistem)
dan dapat diungkakan sebagai sumber atau sumur
dalam persamaan konservatif St.Venant. Jadi
gesekan adalah sumur momentum dan energi
yang hilang pada gelombang kejut adalah sumur
yang menyerap energi dari sistem aliran, dan

gravitasi adalah sumber (sumur) momentum dan
energi yang menambah (mengurangi) momentum
dan energi aliran.

Dalam bentuk persamaan pengatur
yang modern, keduanya ditempatkan di ruas
kanan, sehingga perannya dari segi fisika aliran
menjadi jelas yaitu sebagai sumber (source) atau
sumur (sink). Dengan mencetak persamaan St.
Venant dalam bentuk konservatif atau
divergen, maka gejala kejut akan muncul sebagai
bagian dari penyelesaian, tanpa campur tangan
pemrogram. Cara penyelesaian dimana kejut
merupakan bagian penyelesaian disebut bagan
numerik penangkap kejut (shock capturing
numerical scheme) yang merupakan lawan cara
klasik yaitu pencocokan kejut (shock fitting
method).

Pada cara klasik ini, lokasi kejut
harus dikatahui terlebih dahulu, kemudian pada
lokasi tersebut diterapkan persamaan pengatur
kejut. Jadi pada cara ini terdapat dua persamaan
pengatur yang mewakili aliran mulus yang
dipisahkan oleh persamaan pengatur kejut. Bagan
numerik cara klasik ini nir-konservatif dan
menggunakan  Kisar-kisar primitif. Bagan
numerik penangkap kejut menggunakan Kisar-
kisar arus (flux) dimana massa, momentum atau
energi dikonservasikan dan kisar-kisar arus
berketurunan.  Sesudah  kisar-kisar  arus
dikembalikan kepada kisar primitif, maka akan
dapat disimak apakah aliran mulus dan tak
mulus.

Tuntutan setiap kisar anu dalam
persamaan klasik St.Venant adalah keturunan
(differentiability requirement), maka hanya aliran
berubah lambat laun (Fr<1) dapat dengan baik
dimodelkan oleh persamaan ini. Bila terjadi
katakmulusan (discontinuities) dalam kisar aliran
yang diwakili oleh wvektor U=(u,v,h), maka
hipotesis tentang kemulusan atau secara
matematis keberturunan (differentiability)
dilanggar, sehingga persamaan St. Venant dalam
bentuk asli (klasik) tidak dapat digunakan. Bila
kisar primitif diganti dengan kisar arus (flux
variable), maka kita peroleh suatu bentuk
persamaan baru, dimana hukum dasar kekekalan
berlaku dalam bentuk diferensial harkat satu .

Gejala kejut tersembunyi di dalam
kisar arus, akan muncul dengan sendirinya-
setelah kisar-kisar arus dikembalikan kepada
kisar primitif sebagai bagian dari penyelesaian,
sehingga kejut dapat disimulasikan tanpa harus
mengetahui dimana dan kapan kejut akan terjadi.
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Pendekatan ini disebut cara penangkapan kejut
(shock capturing method). Bentuk persamaan
pengatur yang baru ini juga disebut bentuk
divergensi, bentuk kekal, atau bentuk konservatif.

Metodologi

Metodologi  dari  penelitian ini
mendasarkan dengan mencetak persamaan St.
Venant dalam bentuk konservatif, kemudian
mengintegrasikan menurut theorema Gauss,
maka dalam bentuk integral ini memang suku-
suku konvektif dan suku laju lokal untuk semua
jenis dan ragam aliran yaitu aliran laun lunak dan
tak lunak, aliran deras dengan kejut yang jeda
atau bergerak. Dengan memilih derap waktu, At
cukup Kecil, sehingga sasaran agar suku sumber
menjadi cukup kecil terhadap suku-suku lainnya,
dalam persamaan karakteristik  disebut
ketakubahan semu Riemann, yang berarti bahwa
arus kanan tidak tepat sama dengan nol tetapi
cukup kecil untuk diabaikan dalam model. Pada
umumnya, bila kaidah CFL dipenuhi, maka suku
sumber menjadi kecil. Ketakubahan semu
Riemann inilah yang merupakan basis hampiran
untuk memodelkan aliran semesta (universal flow
model). Pembuktian matematika yang rongkah
(robust mathematical proof) adalah di luar
naskah ini.

Masalah yang paling fundamental
sekarang adalah bahwa pemodelan daulat aliran
dengan sel-sel kecil yang memenuhi kaidah
kemantapan CFL adalah seolah aliran tak
bertahanan dan seolah tidak dipengaruhi oleh
gravitasi. Bila ini benar, maka dari segi logika,
rakitan sel-sel yang melingkupi seluruh daulat
aliran tak bertahanan dan tidak dipengaruhi
gravitasi dan tidak dipengaruhi gesekan dinding.
Maka kita akan nantikan suatu hasil simulasi
yang jauh bebeda dari kenyataan. Tetapi, uji
numerik membuktikan bahwa hasil simulasi
cukup cermat dibandingkan dengan aliran nyata
yang dihitung dengan cara lain yang teruji.
Penjelasan dari keganjilan ini adalah bahwa
pengaruh gesekan dan grafitasi tidak seluruhnya
sirna bersama dengan dihilangkannya suku
sumber. Sebagian dari pengaruh ini seharusnya
tersembunyi dalam suku konvektif dan kelajuan
gelombang. Memang dalam ungkapan laju
gelombang tersembunyi pengaruh gravitasi g dan

kedalaman aliran h dalam ungkapan c=,/gh, di

mana h sendiri mencerminkan pengaruh gesekan
dinding dan gesekan antar butir fluida.

Analisis

Pemecahan Riemann (Riemann
solver) berawal pada persoalan Riemann
(Riemann problem), yaitu persoalan gelombang
kejut yang terjadi pada persamaan aliran
permukaan mampat tak bertahanan yang diambil
berdasarkan konsep bendung runtuh (Toro,
1999), dengan sebuah nilai awal.
Kondisi nilai awal untuk satu matra dapat
dinyatakan sebagai :

U+Fg [ =0
jika x < ol

— U
U&,0 = R
U, Jika x>0

Berdasarkan persamaan pengatur St.
Venant dua matra y) masih mengandung hukum
kemalaran. Penempatan awal U_ dan Ug dapat

dinyatakan sebagai :
i he
U = hL u_ Ug = hR Ug
hL VL hR VR
)

U, dan Ur merupakan konstanta vektor
yang menunjukkan kondisi pada t = 0, untuk
sisi kiri dan sisi kanan dari x =0 di mana x =0
adalah posisi sekat pemisah (bendung). Untuk
pendekatan ini notasi partikel komponen
kecepatan dapat dinyatakan sebagai u., Vi, Ug,
Vr. Pada hampiran Riemann terdapat empat buah
kemungkinan pola gelombang muncul, yang
dapat diilustrasikan pada Gambar 1berikut

a) b)

c) d)
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Gambar 1: Pola gelombang yang
memungkinkan timbul pada
persamaan aliran.

Untuk masing-masing kasus di atas
terdapat tiga macam gelombang di sisi kiri, di sisi
kanan dan di daerah peralihan (tengah). Untuk
kasus (a) dalam Gambar 1 gelombang sisi Kiri
merupakan penghalusan dan gelombang sisi
kanan adalah gelombang kejut. Untuk kasus (b)
dalam Gambar 1 di sebelah kiri adalah
gelombang kejut dan sebelah kanan adalah
gelombang penghalusan. Untuk kasus (c) dalam
Gambar 1 pada kedua sisinya merupakan
penghalusan dan untuk kasus (d) pada Gambar 1
kedua sisinya merupakan gelombang kejut.

Pada umumnya, di sisi Kiri dan di sisi
kanan gelombang merupakan kejut atau
penghalusan, sedangkan gelombang tengah
sebagai gelombang peralihan atau geser (shear
wave), di mana akan memotong komponen
kecepatan tangential — v. Dengan demikian
gelombang peralihan akan meningkat dengan
adanya persamaan momentum — y Yyang
dinyatakan dengan persamaan (1). Persamaan (1)
dapat dilukiskan oleh Gambar 2

Dalam pendekatan ini terdapat 3 buah
rumpun gelombang yang berhubungan dengan
nilai Eigen A, A, dan Ai;. Masing-masing
gelombang tersebut dipisahkan oleh 4 buah
konstanta yang dinyatakan sebagai : u_, u*_,
U*g, Ur.

Daerah di antara sisi kiri dan sisi kanan
disebut “daerah bintang” dan dibagi menjadi dua
buah sub daerah. Penyelesaian dari masalah ini
adalah hampir sama dengan cara menyelesaikan
U(x,t), vyang mana U tergantung pada
perbandingan x/t.

t A

fir- ( [ (”

v

Gambar 2 Struktur penyelesaian umum
dengan hampiran Riemann

1. PERSAMAAN TAK UBAH RIEMANN
Persamaan umum linear semu hiperbolik
sesuai dengan persamaan (2.78) di atas dalam
satu matra dapat dinyatakan sebagai :

W+ AW) W, =0

©)
Vektor W dalam persamaan (3.3) tidak
diketahui dan dapat dinyatakan sebagai :

W = [w, , W, , ... T
(4)

Hampiran ini mempertimbangkan gelombang
yang dihubungkan dengan A;(w) sebagai
karakteristik lapangan. Nilai Eigen A; yang
berhubungkan dengan vektor Eigen dapat

dinyatakan sebagai :

RO = [r® |, n® O ... "
(5)

Vektor variabel terikat W pada pemakaiannya
digunakan sebagai variabel kekal. Persamaan
kemalaran yang ditampilkan dalam bentuk
linear-semu ini dinyatakan sebagai matriks
Jacobian . Generalisasi dari pendekatan ini
berupa potongan struktur sebuah gelombang
yang dapat dinyatakan dengan persamaan
diferensial, sebagai berikut :

dw, _dw, _ dw, (6)
rO~ O O
— _ dW3
= e e O

Suku-suku dari persamaan tersebut
menyatakan rasio dari sebuah perubahan dw,
dari sebuah besaran w; terhadap masing-
masing komponen " dari vektor eigen R
yang berhubungan dengan A; (w) dalam
rumpun gelombang.

Pembahasan

Pada model ini akan diperlihatkan
profil muka air dua matra dimana secara teknis
menggunakan pendekatan Riemann dengan
konsep uji pertama. Pengembangan dari medel
numerik satu matra menjadi dua matra akan lebih
banyak melibatkan kondisi batas (boundary
condition) , dimana kondisi batas tersebut dapat
dilihat dari geometri ruang yang akan Kkita
gunakan, yaitu panjang saluran (kolam) , lebar
saluran (kolam), letak dinding sekat dan pintu
control bendung, sehingga secara teknis akan kita

4



Penyelesaian Rieman untuk Model Bendung Runtuh

(N. Widiasmadi)

pertimbangkan 10 dinding pembatas yang
langsung berhubungan dengan partikel air
dinding tersebut.

Melalui pendekatan Riemann maka
model ini dapat kita kembangkan untuk tiga
kondisi dimana kondisi pertama pada saluran
hilir kering , sedangkan kondisi kedua pada
saluran hilir berair dimana kedua aspek pada
desain tata ruang yang simetri. Sedangkan untuk
kondisi ketiga akan dimodelkan pada tata ruang
yang tidak simeteri (asimetri)

Kondisi Awal
Kondisi awal model adalah elevasi
muka air, debit aliran atau kecepatan pada awal
hitungan yaitu diambil sebesar 0,5m/det, yang
dapat diperoleh dari pengukuran elevasi muka air
bendung saat pintu bendung ditutup, kapasitas
tampungan suatu kolam bendung didesain
berdasarkan debit rencana pengisian yang akan
memberikan kedalaman tertentu dalam hal ini
sebagai kedalaman awal 1,0 meter. Sedangkan
posisi titik diskontinyu pada x=0 vyaitu pada
posisi pintu bendung ditempatkan pada tengah
panjang kolam sebagai control awal elevasi muka
air banjir disebelah hulu diskontinyu.
Kondisi Batas
Secara umum kondisi batas pada
konsep model ini akan diperlihatkan pada
gamabar dibawah ini:
Kondisi batas pada Model
Bendung Runtuh

Secara umum daerah model akan
dibagi menjadi dua yaitu daerah hulu (sebelah
kanan pintu) dan daerah hilir (sebelah kiri pintu),
masing -masing daerah dibatasi oleh dinding.
Untuk daerah hulu batasannya meliputi dinding
1,2 ,3, 4 dan 5 sedangkan untuk daerah hilir
batasannya meliputi dinding 6, 7, 8, 9 dan 10.
Kondisi Batas Hulu

Selain posisi dinding diatas kondisi
batas hulu secara spesifik tergantung pada letak
dan jumlah pintu serta sekat pemisah yang
ditetapkan. Untuk praktisnya dalam model ini
akan ditinjau pintu control tunggal dengan dua
dinding sebagai sekat pemisah.

Kondisi Batas Hilir

Seperti penjelasan pada batas hulu
bahwa posisi dan jumlah pintu serta sekat akan
mempengaruhi dari kondisi batas hilir. Kondisi
batas hilir juga diberikan oleh elevasi genangan
pada tampungan hilirnya yang secara alamiah
didapatkan sebagai muka aliran dasar (base flow)
yang mengalir secara konstan sepanjang tahun,
diperolen dari pengamatan muka air langsung
dilapangan atau dengan perhitungan hidrograp
aliran dasar sebagai base flow yang ada di suatu
Daerah Aliran Sungai (DAS) vaitu ditetapkan 0,1
meter.

Faktor Sumber

Dalam model numeric dimasukkan
beberapa aspek kondisi morfologi kolam atau
sungai yang terbendung yang dimasukkan

2
4
1 Daerah Hulu
(Kanan)
5
3

10
6
Daerah Hilir 9
(Kiri)
7
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sebagai faktor sumber, dimana
meliputi faktor kekasaran dasar lantai saluran
peluncur dengan angka manning (Cn) adalah
0,003 dan kemiringan dasar lantai diambil 0.0005

Model Simetri Hilir Berair

Pada model ini memperlihatkan pola
muka air pada dua matra secara jelas, dimana
terbagi dalam jaring-jaring (volume tilik) sesuai
pembagian sel tiap meter persegi. Karena
pertimbangan teknis operasional model maka
terdiri dari 40x40 sel atau terdiri dari 1600
volume tilik yang akan memberikan nilai
kedalaman air.

Kasus aliran bendung runtuh dua matra
pada suatu kolam ini akan menggunakan konsep
uji pertama pada pendekatan Riemann, dimana
hasil perhitungan model muncul perambatan
kejut yang cukup kuat terjadi pada sisi kanan dan
perambatan mulus dengan kecepatan sonik
(aliran kritik) pada sisi Kiri . Peristiwa ini cukup
penting dan menyiratkan bahwa nilai eigen A,=u-
a akan berubah dari nilai negatif ke nilai positif
yang ditandai dengan arah gerak perambatan
gelombang dari sisi kiri melalui daerah peralihan
(x=0) menuju ke sisi kanan, sehingga secara
jelas perubahan ini akan membawa nilai eigen A,
melalui nilai nol pada posisi pintu bendung atau
pada posisi peralihan dimana x = 0 pada posisi
kontrol aliran pada pintu bendung.

Pada model simetri hilir berair akan
ditinjau dan diamati pada waktu 2,3,4 dan 5 detik
setelah pintu bendung dibuka secara mendadak.
Pada kondisi pengamatan awal pada 2 detik
setalah pintu bendung dibuka maka akan terjadi
aliran mulus pada hulu bendung dan terjadi
loncatan air walau kecil. Pada waktu pengamatan
ini muka kejut akan terbentuk sejauh 10 meter
dari pusat diskontinyu  dengan perambatan
simetri kearah hilir. Kedalaman konstan pada
hilir muka kejut merupakan tinggi genangan
sebagai aliran dasar (base flow) yaitu 0,1 meter
(lihat gambar 6.7a). Karena model simetris maka
bentuk aliran mulus yang terjadi pada hulu pintu
bendung juga terlihat simeteri memusat pada
sentral lebar pintu bendung dan menimbulkan
loncatan yang simetris pula pada hilir pintu
bendung.

Pada kondisi pengamatan kedua
yaitu pada waktu 3 detik setelah pintu bendung
dibuka maka aliran mulus yang terbentuk lebih
fluktuatif dari kondisi pertama dengan medan
loncatan air terbentuk lebih luas dan lebih tinggi

dari  kondisi pertama (lihat gambar 3).
Penyebaran loncatan air dalam dua matra terlihat
jelas pola rayapannya dalam hal ini terlihat
berolak simeteri dan berlanjut membentuk aliran
kejut dengan muka kejut pada jarak 15 meter dari
sekat dinding pemisah.

Dalam dua matra pola aliran mulus
akan semakin meluas pada bidang hulunya ,
karena model bangunan dibuat simeteri maka
medan perluasan aliran mulus berbentuk setengah
lingkaran dan semakin lama maka medan
tersebut semakin meluas , demikian juga medan
loncatan air maka akan mempunyai pola yang
menyebar secara radial namun dengan pola
kedalaman loncatan tetap karena debit aliran kita
pertahankan sebesar 1 meter/det. Untuk pola
muka kejut akan terus bergerak meluas
membentuk  setengah  lingkaran  dengan
bertambahnya waktu dan ini dapat diamati pada
kaki-kaki kejut yang terbentuk terhadap
permukaan konstan yang ada sebesar 0,1 sebagai
aliran base flow sebagai genangan awal (lihat
gambar 4).

Gambar 3 Model Bendung Runtuh Simetri Hilir
Berair 2 dt
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Gambar 4 Model Bendung Runtuh Simetri Hilir
Berair 3 dt
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Gambar 5 Model Bendung Runtuh
Simetri Hilir Berair pada 4 dt

Kesimpulan

Dari

hasil uji numerik dan uji hipotetik pada

bagian depan maka didapat suatu grafik dari
representasi hitungan yang muncul berdasarkan
analisis model baik pada hasil model satu matra
ataupun dari hasil model dua matra. Beberapa
kesimpulan hasil uji numerik dan hipotetik diatas
maka dapat ditulis sebagai berikut :

1.

Gagasan Gadunov pada azasnya adalah
mereduksi masalah global menjadi
masalah lokal (reduction of global
problem to a local one), sangat berbeda
dengan semua pendekatan penyelesaian
masalah ketakmulusan dengan
membangun (construct) bagan

penyelesaian  global (menyeluruh)
kemudian menerapkan kepada lokal. Jadi
dalam penyelesaian jenis Godunov
(Godunov’s type of solution), soal lokal
berupa RP  dipecahkan  dengan
menggunakan apapun teknik yang
tersedia generic RS (Riemann Solver).
Kemudian RS lokal ini dirakit menjadi
RS global dengan rotasi matrix. Adapun
soal lokal yang dipecahkan lokal adalah
perkiraan arus (approximate flux), yang
menerobos antarmuka sel volume hingga.
Pada model bendung runtuh hilir berair
maka akan muncul perambatan kejut
cukup kuat yang akan terjadi pada sisi
kanan dan perambatan mulus dengan
kecepatan sonik (aliran kritik) pada sisi
kiri . Peristiwa ini cukup penting dan
menyiratkan bahwa nilai eigen 4, =u-a
akan berubah dari nilai negatif ke nilai
positif yang ditandai dengan arah gerak
perambatan gelombang dari sisi Kkiri
melalui daerah peralihan (x=0) menuju
ke sisi kanan, sehingga secara jelas
perubahan ini akan membawa nilai eigen
A1 melalui nilai nol pada posisi pintu
bendung atau pada posisi peralihan
dimana x = 0 atau 4, = u—a = 0 yang
dapat ditulis u = a.




