Penerapan Metode Dbscan untuk Identifikasi Kluster Gempa Bumi di Daerah Yogyakarta

Wahyu Ajitomo, Irfan Pratama

Abstract


Earthquakes are one of the natural disasters that frequently occur in Indonesia, including the Yogyakarta region. A profound understanding of earthquake patterns and characteristics in this area is crucial for risk mitigation efforts and disaster preparedness. Clustering methods, such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), can provide an effective approach to identifying earthquake clusters with high density in the Yogyakarta region. This research used the DBSCAN method to identify earthquake clusters with specific magnitude strengths in the Yogyakarta region. Earthquake distribution data from 2017 to 2022 was used as the research sample. The clustering process considered the epsilon parameter and the minimum number of samples within a cluster. The analysis results revealed the existence of earthquake clusters with high density concentrated in specific locations in the Yogyakarta region. These clusters reflect clear spatial patterns and indicate significant seismic activity in the area. The conclusion of this study confirms the presence of earthquake patterns and clusters that can be identified using the DBSCAN method. These clusters provide further insight into the distribution of earthquakes in the Yogyakarta region and can serve as a reference for earthquake risk mitigation in the future. The findings of this research offer valuable insights for stakeholders in decision-making and planning responsive actions to earthquakes in the Yogyakarta region.


Keywords


Earthquake, Clustering, Magnitude Strength, Earthquake Distribution, Yogyakarta

Full Text:

PDF

References


Artatia, H., & Hakim, R. F. (2015). Pengelompokan Dampak Gempa Bumi dari Segi Kerusakan Fasilitas pada Provinsi yang Berpotensi Gempa di Indonesia Menggunakan K-Means-Clustering. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika UMS, 742–748.

Bahri, Z., & Mungkin, M. (2019). Penggunaan SCR sebagai alarm peringatan dini pada saat terjadi gempa bumi. JET (Journal of Electrical Technology), 4(3), 101–105.

Bora, D. J., & Gupta, D. A. K. (2014). A Comparative study Between Fuzzy Clustering Algorithm and Hard Clustering Algorithm. International Journal of Computer Trends and Technology, 10(2), 108–113. https://doi.org/10.14445/22312803/ijctt-v10p119

Han, J., Kamber, M., & Pei, J. (2012). Data Mining : Concepts and Techniques : Concepts and Techniques (3rd Edition). In Data Mining. http://linkinghub.elsevier.com/retrieve/pii/B9780123814791000010

Hartatik, H., & Cahya, A. S. D. (2020). Clusterisasi Kerusakan Gempa Bumi di Pulau Jawa Menggunakan SOM. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 2(02), 25–34. https://doi.org/10.46772/intech.v2i02.286

Larose, D. T., & Larose, C. D. (2015). Data Mining and Predictive Analytics. John Wiley & Sons, Inc.

Omran, M. G. H., Engelbrecht, A. P., & Salman, A. (2007). An overview of clustering methods. Intelligent Data Analysis, 11(6), 583–605. https://doi.org/10.3233/ida-2007-11602

Pakuani, K. W., & Kurniawan, R. (2021). Kajian Penentuan Nilai Epsilon Optimal Pada Algoritma DMDBSCAN Dan Pemetaan Daerah Rawan Gempa Bumi Di Indonesia Tahun 2014-2020. Seminar Nasional Official Statistics, 2021(1), 991–1000. https://doi.org/10.34123/semnasoffstat.v2021i1.847

Setiawan, I. N., Krismawati, D., Pramana, S., & Tanur, E. (2022). Klasterisasi Wilayah Rentan Bencana Alam Berupa Gerakan Tanah Dan Gempa Bumi Di Indonesia. Seminar Nasional Official Statistics, 2022(1), 669–676. https://doi.org/10.34123/semnasoffstat.v2022i1.1538

Soehaimi, A. (2008). Seismotektonik dan Potensi Kegempaan Wilayah Jawa. Indonesian Journal on Geoscience, 3(4), 227–240. https://doi.org/10.17014/ijog.vol3no4.20085

Supriyadi, B., Windarto, A. P., Soemartono, T., & Mungad. (2018). Classification of natural disaster prone areas in Indonesia using K-means. International Journal of Grid and Distributed Computing, 11(8), 87–98. https://doi.org/10.14257/ijgdc.2018.11.8.08

Tanzil Furqon, M., & Muflikhah, L. (2016). Clustering the Potential Risk of Tsunami Using Density-Based Spatial Clustering of Application With Noise (Dbscan). Journal of Enviromental Engineering and Sustainable Technology, 3(1), 1–8. https://doi.org/10.21776/ub.jeest.2016.003.01.1

Trappenberg, T. (2019). Fundamentals of Machine Learning (T. Trappenberg (ed.)). Oxford University Press.

Wahyu, A., & Rushenda. (2022). Klasterisasi Dampak Bencana Gempa Bumi. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(1), 175–179. https://doi.org/10.26418/jp.v8i1




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.9214

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518