Main Article Content

Abstract

Mangrove forests are one type of forest that grows in tropical and subtropical regions and plays a crucial role in maintaining ecosystem balance. One way to assess the health of mangrove communities is through regular monitoring and evaluation using modern technology such as digital image processing. The percentage of mangrove canopy cover can serve as a key indicator in evaluating the health and population density of mangrove communities. This study aims to implement the Otsu thresholding method in a digital image processing-based system capable of automatically determining the health status of mangrove communities based on the percentage of mangrove canopy cover. Mangrove canopy cover images were acquired using hemispherical photography techniques. Experimental results show that the system built using the Otsu thresholding method has an average Relative Absolute Error (RAE) of 0.034 and average Mean Error (ME) of 0.052, with an average processing time of 5.3 seconds. This indicates that the system can automatically determine the health status of mangrove communities in a relatively short time. It also suggests that the process of determining the health status of mangrove communities aligns with direct field observations.

Keywords

mangrove communities image processing Otsu thresholding mangrove canopy cover

Article Details

References

  1. Ali, A., & Nayyar, Z. A. (2020). Extraction of mangrove forest through Landsat 8 Mangrove Index (L8MI). Arabian Journal of Geosciences, 13(21). https://doi.org/10.1007/s12517-020-06138-4
  2. Arianto, M. F. (2020). Jurnal Geografi: Geografi dan Pengajarannya. Jurnal Geografi: Geografi Dan Pengajarannya, 3(1), 1–7.
  3. Arifin, A. Z., Tanuwijaya, E., Nugroho, B., Priyatno, A. M., Indraswari, R., Astuti, E. R., & Navastara, D. A. (2019). Automatic image slice marking propagation on segmentation of dental CBCT. Telkomnika (Telecommunication Computing Electronics and Control), 17(6), 3218–3225. https://doi.org/10.12928/TELKOMNIKA.v17i6.13220
  4. Dharmawan, I. W. E., & Pramudji. (2017). Panduan Pemantauan Komunitas Mangrove. In Pusat Penelitian Oseanografi LIPI (2nd ed.). COREMAP CTI LIPI.
  5. Dharmawan, I. W. E., Suyarso, Ulumuddin, Y. I., Prayudha, B., & Pramudji, P. (2020). Panduan Monitoring Struktur Komunitas Mangrove di Indonesia (S. W & A. D. Gumelar, Eds.; 1st ed., Vol. 1). PT Media Sains Nasional. https://www.researchgate.net/publication/344000335
  6. Febrianto, S., Hartoko, A., & Suryanti. (2019). EKOSISTEM MANGROVE COASTAL BLUE CARBON (0 ed., Vol. 1). Undip Press.
  7. Goh, T. Y., Basah, S. N., Yazid, H., Aziz Safar, M. J., & Ahmad Saad, F. S. (2018). Performance analysis of image thresholding: Otsu technique. Measurement: Journal of the International Measurement Confederation, 114(March 2017), 298–307. https://doi.org/10.1016/j.measurement.2017.09.052
  8. Guan, Z., Song, L., & Song, X. (2016). A New Algorithm Research of License Plate Tilt Correction. International Conference on Applied Mathematics, Simulation and Modelling, 138–140.
  9. Idrus, A. Al, Ilhamdi, M. L., Hadiprayitno, G., & Mertha, G. (2018). Sosialisasi Peran dan Fungsi Mangrove Pada Masyarakat di Kawasan Gili Sulat Lombok Timur. Jurnal Pengabdian Magister Pendidikan IPA, 1(1), 52–59.
  10. Kuncahyo, I., Pribadi, R., & Pratikto, I. (2020). Komposisi dan Tutupan Kanopi Vegetasi Mangrove di Perairan Bakauheni, Kabupaten Lampung Selatan. Journal of Marine Research, 9(4), 444–452. https://doi.org/10.14710/jmr.v9i4.27915
  11. Mahardika, F., Kabul, A. P., & Saputra, D. I. S. (2017). IMPLEMENTASI METODE WATERFALL PADA PROSES DIGITALISASI CITRA ANALOG. VOLT Jurnal Ilmiah Pendidikan Teknik Elektro, 2(1), 63–72.
  12. Manna, S., & Raychaudhuri, B. (2020). Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition. Geocarto International, 35(4), 434–452. https://doi.org/10.1080/10106049.2018.1520923
  13. Muchtar, M. (2023). DETEKSI AREA KERUSAKAN PADA CITRA TERUMBU KARANG AKIBAT CORAL BLEACHING BERBASIS PENGOLAHAN CITRA DIGITAL. Jurnal Innovation and Future Technology (IFTECH) P-ISSN, 5, 2656–1719.
  14. Ningrum, I. P., Muchtar, M., Saputra, R. A., Sajiah, A. M., Harati, S. R., & Jaya, H. (2020). Fuzzy Logic Methods to Identify Potential Area Mapping for Mangrove Forests in Kendari using Landsat Image. IOP Conference Series: Materials Science and Engineering, 797(1). https://doi.org/10.1088/1757-899X/797/1/012019
  15. Nurhaliza, A. P., Damayanti, A., & Dimyati, M. (2021). Monitoring Area and Health Changes of Mangrove Forest Using Multitemporal Landsat Imagery in Taman Hutan Raya Ngurah Rai, Bali Province. IOP Conference Series: Earth and Environmental Science, 673(1). https://doi.org/10.1088/1755-1315/673/1/012050
  16. Pasrun, Y. P., Muchtar, M., Basyarah, A. N., & Noorhasanah. (2020). Indonesian License Plate Detection Using Morphological Operation. IOP Conference Series: Materials Science and Engineering, 797(1), 4–10. https://doi.org/10.1088/1757-899X/797/1/012037
  17. Pratiwi, N. M. D., & Widiartha, I. M. (2021). Mangrove Ecosystem Segmentation from Drone Images using Otsu Method. Jurnal Elektronik Ilmu Komputer Udayana, 9(3), 361–396.
  18. Riska, R., Tasabaramo, I. A., Lalang, L., Muchtar, M., & Asni, A. (2022). Kelimpahan Mikroplastik pada Sedimen Ekosistem Terumbu Karang di Pulau Bokori Sulawesi Tenggara. Jurnal Sumberdaya Akuatik Indopasifik, 6(4), 331–342. https://doi.org/10.46252/jsai-fpik-unipa.2022.vol.6.no.4.252
  19. Setiyorini, A., Purnama, I. P. N., Sari, J. Y., Muchtar, M., & Ngii, E. (2019). Vehicle number plate identification using template matching algorithm for automatic parking system. ACM International Conference Proceeding Series, 196–200. https://doi.org/10.1145/3330482.3330483
  20. Tidore, S., A Sondak, C. F., Rumengan, A. P., Kaligis, E. Y., Like Ginting, E., & Kondoy, C. (2021). STRUKTUR KOMUNITAS HUTAN MANGROVE DI DESA BUDO KECAMATAN WORI KABUPATEN MINAHASA UTARA (Mangrove Community Structure at Budo Village Wori District North Minahasa Regency). Jurnal Pesisir Dan Laut Tropis, 9(2), 71–78.
  21. Zimudzi, E., Sanders, I., Rollings, N., & Omlin, C. (2019). Segmenting mangrove ecosystems drone images using SLIC superpixels. Geocarto International, 34(14), 1648–1662. https://doi.org/10.1080/10106049.2018.1497093