Analisis Perbandingan Klasifikasi Citra Genus Panthera dengan Pendekatan Deep learning Model MobileNet

Waeisul Bismi, Deny Novianti, Muhammad Qomaruddin

Abstract


Wildlife conservation is increasingly becoming a top priority as several species in the Panthera genus have experienced significant declines in their populations since the 1970s, due to illegal hunting activities, loss of natural habitat, and reduced prey. Their protection is therefore of paramount importance. In today's digital age, image processing and artificial intelligence (AI) technologies have changed the way we view and protect wildlife. In this context, the approach of using MobileNet models in deep learning, which is a branch of artificial intelligence, has proven to be very effective in overcoming complex challenges in image processing. However, despite MobileNet's potential in classifying images of the Panthera genus, not many studies have specifically compared it with other existing methods. Therefore, in this study, a comparative analysis of Panthera genus image classification using the deep learning approach of MobileNet model with alternative models from previous studies is conducted. The dataset used consists of 6,460 images with 6 labels: Jaguar, Leopard, Lion, Lioness, Tiger, and Snow Tiger, which are divided into training, validation, and testing sets. Based on the evaluation results, the proposed method using the MobileNetV1 model achieved the highest accuracy of 89.93%, followed by the MobileNetV2 model with 89.78%. This research is expected to provide valuable insights in the development of system implementation in an application on various platforms for image detection, to support species conservation efforts in the Panthera genus.


Keywords


Deep learning; Genus Panthera; Klasifikasi; MobileNet; Perbandingan.

Full Text:

PDF

References


Anwar, G.A. and Riminarsih, D. (2019) ‘Klasifikasi Citra Genus Panthera Menggunakan Metode Convolutional Neural Network (Cnn)’, Jurnal Ilmiah Informatika Komputer, 24(3), pp. 220–228. Available at: https://doi.org/10.35760/ik.2019.v24i3.2364.

Ashari Rakhmat, G. and Fikri Haekal, M. (2023) ‘MIND (Multimedia Artificial Intelligent Networking Database Peningkatan Performa MobilenetV3 dengan Squeeze-and-Excitation (Studi Kasus Klasifikasi Kesegaran Ikan Berdasarkan Mata Ikan)’, Journal MIND Journal | ISSN, 8(1), pp. 27–41. Available at: https://doi.org/10.26760/mindjournal.v8i1.27-41.

Asroni, A., Indrawan, G. and Erawati Dewi, L.J. (2023) ‘Implementasi Hirarki Dataset Dalam Membangun Model Language Aksara Bali Menggunakan Framework Tesseract OCR’, Jurnal RESISTOR (Rekayasa Sistem Komputer), 6(1), pp. 20–28. Available at: https://doi.org/10.31598/jurnalresistor.v6i1.1345.

Bismi, W. and Qomaruddin, M. (2023) ‘Klasifikasi Citra Genus panthera Menggunakan Pendekatan Deep learning Berbasis Convolutional Neural network ( CNN )’, Jurnal Informatika dan Rekayasa Perangkat Lunak, 5(2).

Bjordal, M.D. (2016) ‘Why big cats are at high risk of extinction due to their exceptional predatory abilities. What conservation strategies are needed?’, USURJ: University of Saskatchewan Undergraduate Research Journal, 2(2). Available at: https://doi.org/10.32396/usurj.v2i2.122.

C. Gonzalez, R. and E. Woods, R. (2008) Digital Image Processing. Third (3). Edited by G. Dulles and T. Benfatti. United State Of America: Pearson Education, Inc. Available at: https://sde.uoc.ac.in/sites/default/files/sde_videos/Digital Image Processing 3rd ed. - R. Gonzalez, R. Woods-ilovepdf-compressed.pdf.

Dly, I.A. et al. (2023) ‘Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data’, 4(4), pp. 1176–1185. Available at: https://doi.org/10.47065/josh.v4i4.3702.

Feriawan, J. et al. (2020) ‘Perbandingan Arsitektur Visual Geometry Group dan MobileNet Pada Pengenalan Jenis Kayu’, Seminar Nasional Inovasi Teknologi UN PGRI, pp. 185–190.

Hakim, L. et al. (2018) ‘Emotion Recognition in Elderly Based on SpO2 and Pulse Rate Signals Using Support Vector Machine’, Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, pp. 474–479. Available at: https://doi.org/10.1109/ICIS.2018.8466489.

Hakim, L. et al. (2021) ‘Disease Detection of Dragon Fruit Stem Based on The Combined Features of Color and Texture’, INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, 5(2), pp. 161–175. Available at: https://doi.org/10.29407/intensif.v5i2.15287.

Hakim, L. et al. (2023) ‘Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network’, Jurnal Teknoinfo, 17(1), p. 203. Available at: https://doi.org/10.33365/jti.v17i1.2342.

Hyun, J.Y. et al. (2021) ‘Whole genome survey of big cats (Genus: Panthera) identifies novel microsatellites of utility in conservation genetic study’, Scientific Reports, 11(1), pp. 1–14. Available at: https://doi.org/10.1038/s41598-021-92781-0.

Ilahiyah, S. and Nilogiri, A. (2018) ‘Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network’, JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), 3(2), pp. 49–56.

Isa, I.G.T. and Junedi, B. (2022) ‘Hyperparameter Tuning Epoch dalam Meningkatkan Akurasi Data Latih dan Data Validasi pada Citra Pengendara’, Prosiding Sains Nasional dan Teknologi, 12(1), p. 231. Available at: https://doi.org/10.36499/psnst.v12i1.6697.

Kaya, Y. and Gürsoy, E. (2023) ‘A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection’, Soft Computing, 27(9), pp. 5521–5535. Available at: https://doi.org/10.1007/s00500-022-07798-y.

Kristiawan, K. and Widjaja, A. (2021) ‘Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel’, Jurnal Teknik Informatika dan Sistem Informasi, 7(1), pp. 35–46. Available at: https://doi.org/10.28932/jutisi.v7i1.3182.

Leovincent, A. and Yoannita, Y. (2023) ‘Klasifikasi Ras Anjing Berdasarkan Citra Menggunakan Convolutional Neural Network’, Jurnal Algoritme, 3(2), pp. 160–169. Available at: https://doi.org/10.35957/algoritme.v3i2.3389.

Maulana, F.F. and Rochmawati, N. (2020) ‘Klasifikasi Citra Buah Menggunakan Convolutional Neural Network’, Journal of Informatics and Computer Science (JINACS), 1(02), pp. 104–108. Available at: https://doi.org/10.26740/jinacs.v1n02.p104-108.

Mawarni, D.I. et al. (2023) ‘Metode Digital Image Processing Untuk Menentukan Distribusi Ukuran Diameter Gelembung Udara Pada Microgelembung Generator’, Journal of Information System Management (JOISM), 4(2), pp. 132–136. Available at: https://doi.org/10.24076/joism.2023v4i2.977.

Oriza Sativa Fiojati, Nani Mintarsih and Yuli Maharetta Arianti (2023) ‘Perbandingan Algoritma Efficientnetb0 Dan Inceptionv3 Dalam Klasifikasi Citra Jenis Anjing’, Jurnal Ilmiah Teknik, 2(2), pp. 12–16. Available at: https://doi.org/10.56127/juit.v2i2.677.

Putri, S.T.E. and Fahrurozi, A. (2022) ‘Pendeteksian Objek Pada Citra Hewan Karnivora Dan Herbivora Menggunakan Faster R-Cnn’, Jurnal Ilmiah Informatika Komputer, 27(1), pp. 32–42. Available at: https://doi.org/10.35760/ik.2022.v27i1.5858.

Rozaqi, A.J., Sunyoto, A. and Arief, M. rudyanto (2021) ‘Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network’, Creative Information Technology Journal, 8(1), p. 22. Available at: https://doi.org/10.24076/citec.2021v8i1.263.

Sari, L., Romadloni, A. and Listyaningrum, R. (2023) ‘Penerapan Data Mining dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random Forest’, Infotekmesin, 14(1), pp. 155–162. Available at: https://doi.org/10.35970/infotekmesin.v14i1.1751.

Supiyani, I. and Arifin, N. (2022) ‘Identifikasi Nomor Rumah Pada Citra Digital Menggunakan Neural Network’, METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi, 8(1), pp. 18–21. Available at: https://doi.org/10.46880/mtk.v8i1.921.

Suryanto, A. et al. (2014) ‘PENGKLASIFIKASI GENUS PANTHERA (HARIMAU, SINGA, JAGUAR DAN MACAN TUTUL) DENGAN METODE NAIVE BAYES’, Universitas Brawijaya, p. 5.

Wei, L. et al. (2011) ‘Mitogenomic analysis of the genus Panthera’, Science China Life Sciences, 54(10), pp. 917–930. Available at: https://doi.org/10.1007/s11427-011-4219-1.

Wulandari, I., Yasin, H. and Widiharih, T. (2020) ‘Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn)’, Jurnal Gaussian, 9(3), pp. 273–282. Available at: https://doi.org/10.14710/j.gauss.v9i3.27416.


Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518