Main Article Content

Abstract

Cyber-crime is becoming more massive as online activities increase. Cybercrime is a criminal act that exploits digital technology to damage, harm, and destroy property. Therefore, it is crucial for internet users to have knowledge of cybersecurity and the world of technology and the internet in order to avoid falling victim to cybercrime. The aim of this study is to develop a chatbot system as a centralized information medium on cybersecurity, technology, and the internet for internet users. The development of this chatbot aims to reduce the risks of cybercrimes and help enhance internet users' awareness of cybercrime. This research employs the AI Project Cycle method in chatbot development and utilizes the Long Short-Term Memory (LSTM) deep learning model algorithm to develop a model that achieves high accuracy. The training results of the LSTM model achieved an accuracy score of 100% and a loss of 3.09% with 400 epochs. Consequently, it can be concluded that the LSTM algorithm is highly effective for training and developing a chatbot model.

Keywords

AI Project Cycle Chatbot Cybercrime Flask Long Short-Term Memory

Article Details

References

  1. Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. In IFIP Advances in Information and Communication Technology: Vol. 584 IFIP. Springer International Publishing. https://doi.org/10.1007/978-3-030-49186-4_31
  2. Aggarwal, S. (2023). The Ultimate Guide to Building Your Own LSTM Models. ProjectPro. https://www.projectpro.io/article/lstm-model/832
  3. Al-Khater, W. A., Al-Maadeed, S., Ahmed, A. A., Sadiq, A. S., & Khan, M. K. (2020). Comprehensive review of cybercrime detection techniques. IEEE Access, 8, 137293–137311. https://doi.org/10.1109/ACCESS.2020.3011259
  4. Bagian Komunikasi Publik, B. H. dan K.-B. (2020). Rekap Serangan Siber (Januari – April 2020). In Https://Bssn.Go.Id/Rekap-Serangan-Siber-Januari-April-2020/ (pp. 1–1).
  5. Dhyani, M., & Kumar, R. (2019). An intelligent Chatbot using deep learning with Bidirectional RNN and attention model. Materials Today: Proceedings, 34, 817–824. https://doi.org/10.1016/j.matpr.2020.05.450
  6. Gravano, A. (2010). Turn-taking and affirmative cue words in task-oriented dialogue. Dissertation Abstracts International, B: Sciences and Engineering, 70(8), 4943. https://doi.org/10.1162/COLI
  7. Habibi, M. R., & Liviani, I. (2020). Kejahatan Teknologi Informasi (Cyber Crime) dan Penanggulangannya dalam Sistem Hukum Indonesia. Al-Qanun: Jurnal Pemikiran Dan Pembaharuan Hukum Islam, 23(2), 400–426. http://jurnalfsh.uinsby.ac.id/index.php/qanun/article/view/1132
  8. Kemp, S. (2022). Digital 2022 Global Overview Report: The Essential Guide to the World’s Connected Behaviours. DataReportal. https://datareportal.com/reports/digital-2022-global-overview-report
  9. Khanna, A., Pandey, B., Vashishta, K., Kalia, K., Pradeepkumar, B., & Das, T. (2015). A Study of Today’s A.I. through Chatbots and Rediscovery of Machine Intelligence. International Journal of U- and e-Service, Science and Technology, 8(7), 277–284. https://doi.org/10.14257/ijunesst.2015.8.7.28
  10. Lalwani, T., Bhalotia, S., Pal, A., Bisen, S., & Rathod, V. (2018). Implementation of a Chat Bot System using AI and NLP. International Journal of Innovative Research in Computer Science & Technology, 6(3), 26–30. https://doi.org/10.21276/ijircst.2018.6.3.2
  11. Muhidin, A., Danny, M., & Rilvani, E. (2023). Algoritme Multinomial Naïve Bayes Pada Aplikasi Chatbot Layanan Informasi Berbasis Teks. Progresif: Jurnal Ilmiah …, 71–80. http://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/view/1113%0Ahttp://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/download/1113/640
  12. Nimavat, K., & Champaneria, T. (2017). Chatbots: An Overview Types, Architecture, Tools and Future Possibilities. International Journal of Scientific Research and Development, 5(7), 1019–1026.
  13. Nugraha, K. A., & Sebastian, D. (2021). Chatbot Layanan Akademik Menggunakan K-Nearest Neighbor. Jurnal Sains Dan Informatika, 7(1), 11–19. https://doi.org/10.34128/jsi.v7i1.285
  14. Nur Latifah, F., Mawardi, I., & Wardhana, B. (2022). Threat of Data Theft (Phishing) Amid Trends in Fintech Users During the Covid-19 Pandemic (Study Phishing In Indonesia). Perisai : Islamic Banking and Finance Journal, 6(1), 74–86. https://doi.org/10.21070/perisai.v6i1.1598
  15. Prabowo, Y. D., Warnars, H. L. H. S., Budiharto, W., Kistijantoro, A. I., Heryadi, Y., & Lukas. (2019). Lstm and Simple Rnn Comparison in the Problem of Sequence to Sequence on Conversation Data Using Bahasa Indonesia. 1st 2018 Indonesian Association for Pattern Recognition International Conference, INAPR 2018 - Proceedings, 51–56. https://doi.org/10.1109/INAPR.2018.8627029
  16. Purwitasari, N. A., & Soleh, M. (2022). Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Parocessing. Jurnal IPTEK, 6(1), 14–21. https://doi.org/10.31543/jii.v6i1.192
  17. Putra, O. V., Musthafa, A., & Wibowo, K. P. (2021). Klasifikasi Ekspresi Teks Berbahasa Jawa Menggunakan Algoritma Long Short Term Memory. Komputika : Jurnal Sistem Komputer, 10(2), 137–143. https://doi.org/10.34010/komputika.v11i1.4616
  18. Rian Handoko, & Tata Sutabri. (2023). Analisa Machine Learning Dengan Algoritma Multi-Layer Perceptron Untuk Penanganan Kejahatan Phishing. Jurnal Informatika Teknologi Dan Sains, 5(1), 13–17. https://doi.org/10.51401/jinteks.v5i1.2221
  19. Rizki, U. (2019). Multi Respon Ranking Pada Percakapan Layanan Travel Berdasarkan Riwayat Obrolan. Jurnal INFORMA: Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3), 73–79. https://doi.org/10.46808/informa.v5i3.150
  20. Sennhauser, L., & Berwick, R. C. (2018). Evaluating the Ability of LSTMs to Learn Context-Free Grammars. EMNLP 2018 - 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Proceedings of the 1st Workshop, 115–124. https://doi.org/10.18653/v1/w18-5414
  21. Siddhartha. (2021). AI Project Cycle, the 5 Stages. 7-Hidden Layers. https://7-hiddenlayers.com/ai_project_cycle/
  22. Silvanie, A., & Subekti, R. (2022). Aplikasi Chatbot Untuk Faq Akademik Di Ibi-K57 Dengan Lstm Dan Penyematan Kata. JIKO (Jurnal Informatika Dan Komputer), 5(1), 19–27. https://doi.org/10.33387/jiko.v5i1.3703
  23. Trivusi. (2022). Mengenal Algoritma Long Short Term Memory (LSTM). Trivusi. https://www.trivusi.web.id/2022/07/algoritma-lstm.html
  24. Widodo, S., Setiawan, D., Ridwan, T., & Ambari, R. (2022). Perancangan Deteksi Emosi Manusia berdasarkan Ekspresi Wajah Menggunakan Algoritma VGG16. Syntax : Jurnal Informatika, 11(01), 01–12. https://doi.org/10.35706/syji.v11i01.6594
  25. Wintoro, P. B., Hermawan, H., Muda, M. A., & Mulyani, Y. (2022). Implementasi Long Short-Term Memory pada Chatbot Informasi Akademik Teknik Informatika Unila. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 12(1), 68. https://doi.org/10.36448/expert.v12i1.2593
  26. Witanto, K. S., Sanjaya ER, N. A., Karyawati, A. E., Kadyanan, I. G. A. G. A., Suhartana, I. K. G., & Astuti, L. G. (2022). Implementasi LSTM Pada Analisis Sentimen Review Film Menggunakan Adam Dan RMSprop Optimizer. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 10(4), 351. https://doi.org/10.24843/jlk.2022.v10.i04.p05
  27. Yunmar, R. A., & Wisesa, I. W. W. (2020). Pengembangan Mobile-Based Question Answering System Mobile-Based Question Answering System Development With Ontology Based Knowledge. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 7(4), 693–700. https://doi.org/10.25126/jtiik.202072255
  28. Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning approach for Short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68–75. https://doi.org/10.1049/iet-its.2016.0208