Main Article Content

Abstract

Heart failure is a serious and pressing health problem that affects millions of people worldwide. Several factors influence the occurrence of heart failure, such as age, type of pain, blood pressure, cholesterol levels, and other risk factors associated with heart disease. With current technological developments, data mining and machine learning can be used to predict patient health conditions. Therefore, the problem of this research is how to implement data mining techniques for identifying heart disease. The goal of the study is to identify heart disease and prevent heart failure. This study utilises the K-Nearest Neighbour (k-NN) algorithm to estimate the likelihood of patients experiencing heart failure based on available data features. The data used is taken from the kaggle.com site, which includes information from patients diagnosed with heart failure and those who do not suffer from heart failure. The analysis process involves data processing steps, such as normalisation, feature grouping, and selecting the optimal K parameter for the k-NN algorithm. Evaluation is carried out by calculating the accuracy, precision, recall, and F1-score values. Testing is carried out on a dataset with 299 patient data, which is divided into training data and test data with a ratio of 80:20. The results of this study indicate that the k-NN algorithm has an accuracy of 87% in predicting kidney failure. This result indicates that the k-Nearest Neighbour algorithm can effectively predict heart failure.

Keywords

k-Nearest Neighbor kidney failure accuracy predict

Article Details

References

  1. Alfando, A., & Hayami, R. (2023). KLASIFIKASI TEKS BERITA BERBAHASA INDONESIA MENGGU-NAKAN MACHINE LEARNING DAN DEEP LEARNING: STUDI LITERA-TUR. In JATI (Jurnal Mahasiswa Teknik Informatika) (Vol. 7, Issue 1, p. 681). https://doi.org/10.36040/jati.v7i1.6486
  2. Anggrawan, A., & Mayadi, M. (2023). Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes. In Matrik Jurnal Manajemen Teknik Informatika dan Rekayasa Komputer (Vol. 22, Issue 2, p. 405). https://doi.org/10.30812/matrik.v22i2.2777
  3. Ankireddy, S. (2019). A Novel Approach to the Diagnosis of Heart Disease using Machine Learning and Deep Neural Networks. https://doi.org/10.1109/urtc49097.2019.9660581
  4. Azis, H., Purnawansyah, P., Fattah, F., & Putri, I. P. (2020). Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung. In ILKOM Jurnal Ilmiah (Vol. 12, Issue 2, p. 81). https://doi.org/10.33096/ilkom.v12i2.507.81-86
  5. Damara, C., & Ariwibowo, D. D. (2021). Diabetes Melitus tipe 2 sebagai faktor risiko penyakit jantung koroner (PJK) di RSUD Raden Mattaher Jambi tahun 2019. In Tarumanagara Medical Journal (Vol. 3, Issue 2, p. 249). https://doi.org/10.24912/tmj.v4i1.13715
  6. Devi, N. L. P. L., Setiabudi, I. K., Harditya, K. B., & Wicaksana, I. G. A. T. (2023). Pelatihan tentang Resusitasi Jantung Paru (RJP) untuk Siswa SMA Guna Membentuk Remaja Tanggap Henti Jantung. In Jurnal Abdimas Kesehatan (JAK) (Vol. 5, Issue 2, p. 287). https://doi.org/10.36565/jak.v5i2.507
  7. Dewi, P., Purwono, P., & Dwi, S. K. (2022). Pemanfaatan Teknologi Machine Learning pada Klasifikasi Jenis Hipertensi Berdasarkan Fitur Pribadi. In Smart Comp Jurnalnya Orang Pintar Komputer (Vol. 11, Issue 3). Politeknik Harapan Bersama Tegal. https://doi.org/10.30591/smartcomp.v11i3.3721
  8. Erlin, E., Marlim, Y. N., Junadhi, Suryati, L., & Agustina, N. (2022). Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression. In Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) (Vol. 11, Issue 2, p. 88). Gadjah Mada University. https://doi.org/10.22146/jnteti.v11i2.3586
  9. Girianto, P. W. R. (2020). Pemberian Feedback pada Home Learning CPR untuk Meningkatkan Kemampuan Bystander CPR. In Jurnal Ners dan Kebidanan (Journal of Ners and Midwifery) (Vol. 7, Issue 1, p. 30). https://doi.org/10.26699/jnk.v7i1.art.p030-036
  10. Hapsari, R. K., Salim, A. H., Meilani, B. D., Indriyani, T., & Rachman, A. (2023). Comparison of the Normalization Method of Data in Classifying Brain Tumors with the k-NN Algorithm. In Advances in intelligent systems research/Advances in Intelligent Systems Research (p. 21). Atlantis Press. https://doi.org/10.2991/978-94-6463-174-6_3
  11. Karepesina, F., & Zahrotun, L. (2023). Penerapan Data Mining Untuk Penentuan Penerima Beasiswa Dengan Metode K-Nearest Neighbor (K-NN). In Techno (Jurnal Fakultas Teknik Universitas Muhammadiyah Purwokerto) (Vol. 24, Issue 1, p. 1). Muhammadiyah University Purwokerto. https://doi.org/10.30595/techno.v24i1.9084
  12. Megawaty, M., & Huda, N. (2021). Pembaharuan Sistem Penentuan Untuk Klasifikasi Jenis Penyakit pada RSUD Sekayu Menggunakan Pendekatan Extreme Programming. In JURNAL MEDIA INFORMATIKA BUDIDARMA (Vol. 5, Issue 1, p. 66). https://doi.org/10.30865/mib.v5i1.2273
  13. Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. In Jurnal Informatika Universitas Pamulang (Vol. 5, Issue 4, p. 578). https://doi.org/10.32493/informatika.v5i4.7575
  14. Namli, S. (2021). HUBUNGAN KONSEN-TRASI HEMOGLOBIN DARAH DENGAN KEJADIAN INFARK MIO-KARD AKUT DI RUMAH SAKIT UNIVERSITAS SUMATERA UTARA PERIODE 2018-2019. In JIMKI Jurnal Ilmiah Mahasiswa Kedokteran Indonesia (Vol. 9, Issue 2, p. 20). https://doi.org/10.53366/jimki.v9i2.468
  15. Naufal, S. A., Adiwijaya, A., & Astuti, W. (2020). Analisis Perbandingan Klasifikasi Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) untuk Deteksi Kanker dengan Data Microarray. In JURIKOM (Jurnal Riset Komputer) (Vol. 7, Issue 1, p. 162). https://doi.org/10.30865/jurikom.v7i1.2014
  16. Silvana, M., Akbar, R., & Alfi, S. (2020). Pemanfaatan Metode Naïve Bayes dalam Implementasi Sistem Pakar Untuk Menganalisis Gangguan Perkembangan Anak. In Jurnal Nasional Teknologi dan Sistem Informasi (Vol. 6, Issue 2, p. 74). Andalas University. https://doi.org/10.25077/teknosi.v6i2.2020.74-81
  17. Siswa, T. A. Y. (2023). Komparasi Optimasi Chi-Square, CFS, Information Gain dan ANOVA dalam Evaluasi Peningkatan Akurasi Algoritma Klasifikasi Data Performa Akademik Mahasiswa. In Informatika Mulawarman Jurnal Ilmiah Ilmu Komputer (Vol. 18, Issue 1, p. 62). https://doi.org/10.30872/jim.v18i1.11330
  18. Sugriyono, S., & Siregar, M. U. (2020). Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset. In Jurnal Teknologi dan Sistem Komputer (Vol. 8, Issue 4). Diponegoro University. https://doi.org/10.14710/jtsiskom.2020.13874
  19. Wijaya, A.K. et al. (2024) ‘Identifikasi Penyakit Ginjal Kronis Menggunakan Algoritma K-Nearest Neighbour ( k-NN )’, in Seminar Nasional Informatika Bela Negara (SANTIKA) ISSN, pp. 361–365.
  20. Winantu, A., & Khatimah, C. (2023). Perbandingan Metode Klasifikasi Naive Bayes Dan K-Nearest Neighbor Dalam Memprediksi Prestasi Siswa. In INTEK Jurnal Informatika dan Teknologi Informasi (Vol. 6, Issue 1, p. 58). https://doi.org/10.37729/intek.v6i1.3006
  21. Zuriati, Z., & Qomariyah, N. (2022). Klasifikasi Penyakit Stroke Menggunakan Algoritma K-Nearest Neighbor (KNN). In ROUTERS Jurnal Sistem dan Teknologi Informasi (p. 1). https://doi.org/10.25181/rt.v1i1.2665