Main Article Content

Abstract

This study aims to evaluate the impact of social media usage on the academic productivity of Universitas Sanata Dharma Yogyakarta students, measured through their Grade Point Average (GPA). The methods employed involve two machine learning models: Decision Tree and Random Forest. The data were processed using outlier-resistant scaling techniques and data balancing through oversampling. The results show that the Random Forest model outperformed with an accuracy, precision, recall, and F1-score of 90% each. Meanwhile, the Decision Tree model achieved 80% accuracy, with a precision of 86%, recall of 80%, and F1-score of 82%. Feature importance analysis revealed that 'Faculty' and 'Gender' are the most significant factors in predicting students' GPA. This study concludes that employing Random Forest with data balancing techniques can enhance prediction accuracy and reliability, providing insights into the optimal use of social media to improve students' academic productivity.

Keywords

Social Media Academic Productivity Decision Tree Random Forest

Article Details

References

  1. Apriansyah, & Antoni, D. (2018). Pemanfaatan Media Sosial Sebagai Media Pembelajaran Pada Mahasiswa Perguruan Tinggi di Sumsel. Jurnal Digital Teknologi Informasi, 1(2), 64–79. https://doi.org/10.32502/digital.v1i2.2371
  2. Berry, S. (2019). Teaching to connect: Community-building strategies for the virtual classroom. Online Learning Journal, 23(1), 164–183. https://doi.org/10.24059/olj.v23i1.1425
  3. Budiyanto, F. I. K., Hermadi, I., & Hardhienata, M. K. D. (2024). Prediksi Performa Akademik Mahasiswa untuk Kelulusan Predikat Cum Laude dengan Pendekatan Machine Learning Predicting Academic Performance of Students for Graduating with Cum Laude Honors using Machine Learning Approach. Jurnal Ilmu Komputer dan Agri-informatika, 11(1), 39–49. https://doi.org/10.29244/jika.11.1.39-49
  4. Diantika, S., Nalatissifa, H., Maulidah, N., Supriyadi, R., & Fauzi, A. (2024). Penerapan Teknik Random Oversampling Untuk Memprediksi Ketepatan Waktu Lulus Menggunakan Algoritma Random Forest. Computer Science, 4(1), 11–18. https://doi.org/10.31294/coscience.v4i1.1996
  5. Fadli, Justicia, A. K., & Azanita, A. (2021). Pengaruh Adiksi Gawai Terhadap Prestasi Belajar Mahasiswa Prodi Diploma III Akademi Farmasi Yarsi Pontianak. Jurnal Inkofar, 5(1), 2581–2920. https://doi.org/10.46846/JURNALINKOFAR.V5I1.190
  6. Frazier, A., Silva, J., Meilak, R., Sahoo, I., Broda, M., & Chan, D. (2023). Decision Tree-Based Predictive Models for Academic Achievement Using College Students’ Support Networks. Journal of Data Science, 21(3), 557–577. https://doi.org/10.6339/21-JDS1033
  7. Hariyanti, I., Al-Husaini, M., & Raharja, A. R. (2024). Perbandingan Algoritma Decision Tree dan Naive Bayes dalam Klasifikasi Data Pengaruh Media Sosial dan Jam Tidur Terhadap Prestasi Akademik Siswa. Technologia : Jurnal Ilmiah, 15(2), 332–240. https://doi.org/10.31602/TJI.V15I2.14381
  8. Khalim, K. A., Hayati, U., & Bahtiar, A. (2023). Perbandingan Prediksi Penyakit Hipertensi Menggunakan Metode Random Forest Dan Naïve Bayes. Jurnal Mahasiswa Teknik Informatika, 7(1), 498–504. https://doi.org/10.36040/jati.v7i1.6376
  9. Marna, M., Maxrizal, M., & Saftari, M. (2020). Analisis Faktor yang Mempengaruhi Indeks Prestasi dengan Metode Regresi Logistik Biner. JMPM: Jurnal Matematika dan Pendidikan Matematika, 5(1), 12–22. https://doi.org/10.26594/jmpm.v5i1.1807
  10. Mendoza, M. D., Hutajulu, O. Y., Lubis, A. R., Rahmadani, R., & Astono Putri, T. T. (2022). Pengaruh Penggunaan Media Sosial Dalam Pendidikan Terhadap Prestasi Akademik Mahasiswa. Jurnal Teknologi Pendidikan (JTP), 15(2), 68–80. https://doi.org/10.24114/jtp.v15i2.39120
  11. Nasiruddin, F. Az. zahra, & Rapa’, L. G. (2022). Dampak Media Sosial Terhadap Prestasi Belajar Mahasiswa. Edustudent: Jurnal Ilmiah Pendidikan dan Pembelajaran, 1(3), 188–193. https://doi.org/10.26858/edustudent.v1i3.32890
  12. Ogbuagu, B. C. U. (2021). Social Media Addiction and Academic Productivity Amongst Nigerian Students: Implications. International Journal of Knowledge, Innovation and Entrepreneurship, 9(3), 21–40.
  13. Pribadi, A. W., & Arsyad, P. J. (2021). Analisis Sentimen Belajar Programming Pada Media Sosial Youtube Menggunakan Algoritma Klasifikasi Naive Bayes. JSI (Jurnal sistem Informasi) Universitas Suryadarma, 8(2), 203–210. https://doi.org/10.35968/JSI.V8I2.735
  14. Rizki, N. A., Afifah, N., Barung, T. G., Novri, I., & Hasan, I. K. (2023). Analisis Komparasi Perbedaan IPK Mahasiswa Program Studi Pendidikan Matematika Ditinjau Dari Gaya Belajar. Prosiding Seminar Nasional Pendidikan Matematika, Universitas Mulawarman, 3, 1–9.
  15. Saleh, J., Adrian, A., & Sanger, J. (2022). Sistem Klasifikasi Kelulusan Mahasiswa dengan Algoritma Random Forest. Jurnal Ilmiah Realtech, 18(1), 10–14. https://doi.org/10.52159/realtech.v18i1.4
  16. Satria, F., & Hermanto. (2022). Implementasi Algoritma Naïve Bayes Untuk Memprediksi Pengaruh Media Sosial Terhadap Semangat Belajar Mahasiswa di Masa Pandemi Covid 19. Jurnal Informasi dan Komputer, 10(1), 50–56. https://doi.org/10.35959/JIK.V10I1.290
  17. Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. Stata Journal, 20(1), 1–27. https://doi.org/10.1177/1536867X20909688
  18. Septiani, Y., & Triariani, M. (2022). Pengaruh Burnout Terhadap Produktivitas Mahasiswa PGSD Universitas Kuningan. Jurnal Kiprah Pendidikan, 1(3), 161–167. https://doi.org/10.33578/kpd.v1i3.46
  19. Siregar, L. Y., & Nasution, M. I. P. (2020). Perkembangan teknologi informasi terhadap peningkatan bisnis online. Hirarki: Jurnal Ilmiah Manajemen Dan Bisnis, 2(1), 71–75. https://doi.org/10.30606/hjimb
  20. Wiryany, D., Natasha, S., & Kurniawan, R. (2022). Perkembangan Teknologi Informasi dan Komunikasi terhadap Perubahan Sistem Komunikasi Indonesia. Jurnal Nomosleca, 8(2), 242–252. https://doi.org/10.26905/nomosleca.v8i2.8821