Main Article Content

Abstract

Milkfish is a superior commodity in several districts in Indonesia, namely Sidoarjo, Semarang, and Banten. This fish is also a favorite of Indonesians because it is nutritious and affordable. Therefore, for milkfish processed product business people, the freshness of milkfish is an important parameter because the freshness of the fish affects the quality of the processed products. Manual fish sorting is a problem when the number of fish is vast because it is prone to errors due to fatigue. In addition, manual fish sorting is also wasteful and time-consuming. Therefore, a non-contact automatic system is needed to identify fish freshness based on digital images. This study uses the Convolutional Neural Network (CNN) model to develop an application for milkfish freshness identification. We applied the MobileNetV2 model to identify the freshness of milkfish into three freshness classes, namely very fresh, fresh, and not fresh. The application uses the MobileNetV2 model on 312 milkfish images. The freshness classification performance reached 95%, 70%, and 80% in the high-fresh, fresh, and not-fresh classes, respectively. The global accuracy of the system reached 81.6%, indicating that the application can work well. From the experiments and analysis conducted, it can be concluded that the system has good capabilities in identifying fish freshness.

Keywords

convolutional neural network milkfish image classification freshness mobilenet

Article Details

References

  1. Abamba Omwange, K., Saito, Y., Firmanda Al Riza, D., Zichen, H., Kuramoto, M., Shiraga, K., Ogawa, Y., Kondo, N., & Suzuki, T. (2022). Japanese dace (Tribolodon hakonensis) fish freshness estimation using front-face fluorescence spectroscopy coupled with chemometric analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 276, 121209. https://doi.org/10.1016/J.SAA.2022.121209
  2. Agustyawan, A. (2021). Pengolahan Citra untuk Membedakan Ikan Segar dan Tidak Segar Menggunakan Convolutional Neural Network. Indonesian Journal of Applied Informatics, 5(1), 11. https://doi.org/10.20961/ijai.v5i1.41770
  3. Ahmad, N., Siddiqui, J. P. A., Nabi, G., Khan, K. M., Ali, A., Zamir, Y., Siddique, M. A. M., Amir, S. A., Khokhar, F. N., & Amin, M. (2020). Partial Substitution of Fishmeal with Plant Protein Source the Soybean Meal in the Diets of Arabian Yellowfin Seabream Acanthopagrus arabicus Juveniles. Thalassas, 36(2), 589–596. https://doi.org/10.1007/S41208-020-00225-9/METRICS
  4. Bera, A., Kailasam, M., Mandal, B., Padiyar, A., Ambasankar, K., Sukumaran, K., Makesh, M., Kumararaja, P., Subburaj, R., Thiagarajan, G., & Vijayan, K. K. (2021). Maturity induction and extended spawning kinetics of milkfish (Chanos chanos) administered with combined GnRHa and 17α- methyl testosterone pellet at varied frequencies. Aquaculture, 543, 736993. https://doi.org/10.1016/J.AQUACULTURE.2021.736993
  5. Cai, J., Makita, Y., Zheng, Y., Takahashi, S., Hao, W., & Nakatoh, Y. (2022). Single shot multibox detector for honeybee detection. Computers and Electrical Engineering, 104, 108465. https://doi.org/10.1016/J.COMPELECENG.2022.108465
  6. Dutta, M. K., Issac, A., Minhas, N., & Sarkar, B. (2016). Image processing based method to assess fish quality and freshness. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2015.12.018
  7. Ekoputris, R. O. (2018, May). MobileNet: Deteksi Objek pada Platform Mobile | by Rizqi Okta Ekoputris | Nodeflux | Medium. 9 May 2018.
  8. Gopalakrishnan, S., Nejati, S., Sedaghat, S., Gupta, K., Mishra, R. K., & Rahimi, R. (2023). Electronic-free and low-cost wireless sensor tag for monitoring fish freshness. Sensors and Actuators B: Chemical, 381, 133398. https://doi.org/10.1016/J.SNB.2023.133398
  9. Hassan, H. U., Gabol, K., Wattoo, J., Chatta, A. M., Ali, Q. M., Mahmood, K., Hussain, M., Abro, N. A., Attaullah, M., Rahman, S. U., Rashid, A., Rahman, M. A., & Hossain, M. Y. (2021). First pacific white shrimp, litopenaeus vannamei (Boone, 1931) culture in Pakistan: Evaluation of optimum salinity level for the growth performance and survival in the hypo saline and hyper saline condition under pond ecosystem. Journal of Animal and Plant Sciences, 31(5), 1492–1500. https://doi.org/10.36899/JAPS.2021.5.0351
  10. Hussain, M., Hassan, H. U., Siddique, M. A. M., Mahmood, K., Abdel-Aziz, M. F. A., Laghari, M. Y., Abro, N. A., Gabol, K., Nisar, Rizwan, S., & Halima. (2021). Effect of varying dietary protein levels on growth performance and survival of milkfish Chanos chanos fingerlings reared in brackish water pond ecosystem. The Egyptian Journal of Aquatic Research, 47(3), 329–334. https://doi.org/10.1016/J.EJAR.2021.05.001
  11. Polgan, J. M., Arif, Z., & Lutfi, M. (2022). Identifikasi Kesegaran Ikan Berdasarkan Citra Insang dengan Metode Deep Convolution Neural Network. Jurnal Minfo Polgan, 11(2), 1–6. https://doi.org/10.33395/JMP.V11I2.11633
  12. Prasetyo, E., Purbaningtyas, R., Dimas Adityo, R., Prabowo, E. T., & Ferdiansyah, A. I. (2021). Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 601–608. https://doi.org/10.25126/JTIIK.2021834369
  13. Prasetyo, E., Suciati, N., & Fatichah, C. (2022). Yolov4-tiny with wing convolution layer for detecting fish body part. Computers and Electronics in Agriculture, 198, 107023. https://doi.org/10.1016/J.COMPAG.2022.107023
  14. Sa’dilah Fauzi. (2016, March). Profil Komoditas Ikan Bandeng | Warta Pasar Ikan.
  15. Sandi, G. D. K., Syauqy, D., & Maulana, R. (2020). Sistem Pendeteksi Kesegaran Ikan Bandeng Berdasarkan Bau Dan Warna Daging Berbasis Sensor Mq135 Dan Tcs3200 Dengan Metode Na{"i}ve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN, 2548(10), 964X.
  16. Saputra, S., Yudhana, A., & Umar, R. (2022). Identifikasi Kesegaran Ikan Menggunakan Algoritma KNN Berbasis Citra Digital. Krea-TIF: Jurnal Teknik Informatika, 10(1), 1–9. https://doi.org/10.32832/KREA-TIF.V10I1.6845
  17. Sarimin, M., Bettiza, M., Hayaty, N., & Nugraha, S. (2019). Implementasi HSV dan GLCM untuk Deteksi Kesegaran Ikan Bawal menggunakan Radial Basis Function Berbasis Android. Jurnal Sustainable: Jurnal Hasil Penelitian Dan Industri Terapan, 08(01), 1–7.
  18. Sena, S. (2018). Pengenalan Deep Learning Part 7 : Convolutional Neural Network (CNN) | by Samuel Sena | Medium.
  19. Sena Samuel. (2017). Pengenalan Deep Learning Part 1 : Neural Network | by Samuel Sena | Medium. 2017.
  20. Sholihin, M. (2021). Identifikasi Kesegaran Ikan Berdasarkan Citra Insang dengan Metode Convolution Neural Network. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1352–1360. https://doi.org/10.35957/jatisi.v8i3.939
  21. Siburian, E. T. P., Dewi, P., Kariada, N., Biologi, J., Mipa, F., & Semarang, U. N. (2012). Pengaruh Suhu dan Waktu Penyimpanan Terhadap Pertumbuhan Bakteri dan Fungi Ikan Bandeng. Life Science, 1(2).
  22. Styorini, W., Pratiwi, A., & Widiasari, C. (2022). Identifikasi Tingkat Kesegaran Ikan Berbasis Android. Jurnal Amplifier : Jurnal Ilmiah Bidang Teknik Elektro Dan Komputer, 12(1), 12–18. https://doi.org/10.33369/JAMPLIFIER.V12I1.19174
  23. Vasava, R. (2018). Nutritional and Feeding Reuirement of Milk Fish (Chanos chanos). International Journal of Pure & Applied Bioscience, 6(2), 1210–1215. https://doi.org/10.18782/2320-7051.6463
  24. Widadi, R., Arifwidodo, B., Masykuroh, K., & Saputra, A. (2023). Klasifikasi Tingkat Kesegaran Ikan Nila Menggunakan K-Nearest Neighbor Berdasarkan Fitur Statistis Piksel Citra Mata Ikan. Jurnal Media Informatika Budidarma, 7(1), 242–249. https://doi.org/10.30865/MIB.V7I1.5196
  25. Younis, A., Shixin, L., Jn, S., & Hai, Z. (2020). Real-Time Object Detection Using Pre-Trained Deep Learning Models MobileNet-SSD. https://doi.org/10.1145/3379247.3379264
  26. Yumnam, M., Hatiboruah, D., Mishra, R., Sathyaseelan, K., Nath, P., & Mishra, P. (2023). A Smartphone-based optical sensor with polyaniline label for quantitative determination of freshness of freshwater fish fillets. Sensors and Actuators A: Physical, 361, 114557. https://doi.org/10.1016/J.SNA.2023.114557
  27. Zhao, X., Xu, T., Peng, L., Li, S., Zhao, Y., Liu, H., He, J., & Liang, S. (2023). Recognition and segmentation of teeth and mandibular nerve canals in panoramic dental X-rays by Mask RCNN. Displays, 78, 102447. https://doi.org/10.1016/J.DISPLA.2023.102447