Main Article Content
Abstract
Cybersecurity has become a critical issue in the digital era, with evidence in the last 3 years there have been 6 cybercrime cases in Indonesia that attacked servers, one of which was the latest theft of Bank Syariah Indonesia data in May which resulted in the server being paralyzed for 5 days and the impact was that customers could not access the mobile banking application. From the various cybercrime cases that have occurred in Indonesia, we need to know the current trend of public sentiment about it and one of the sources of public sentiment is Twitter. The use of Machine Learning (ML) and Natural Language Processing (NLP) has become a major focus in understanding public sentiment contained in twitter data. This research proposes an approach that combines ML and NLP techniques to detect sentiment in tweets. The method includes a pre-processing stage to clean and transform the tweet text into a vector representation, followed by the application of ML classification model namely Naïve Bayes to identify positive, negative or neutral sentiments from the tweet dataset. This research utilizes a set of collected and annotated tweet data using python to train and test the model. The experimental results show that the proposed approach successfully produces sentiment classification with an accuracy rate of 62%. It can be concluded that the accuracy of the model is still satisfactory with a positive recall value of 74%, meaning that the public sentiment of the tweets still contains words of a positive nature.
Keywords
Article Details
References
- Al-Garadi, M.A.; et al. (2022) ‘Citation: The Role of Natural Language Processing during the COVID-19 Pandemic: Health Applications, Opportunities, and Challenges’, MDPI Healthcare [Preprint].
- AMT (2023) 6 Kasus Cybercrime di Indonesia yang Menyerang Server.
- Chatterjee, A. et al. (2021) ‘Knowledge graphs for covid-19: An exploratory review of the current landscape’, Journal of Personalized Medicine. MDPI AG.
- Dwison Alizah, M. et al. (2020) ‘Sentimen Analisis Terkait Lockdown pada Sosial Media Twitter’, IJSE-Indonesian Journal on Software Engineering, 6(2),
- Fathonah, F. and Herliana, A. (2021) ‘Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes’, Jurnal Sains dan Informatika, 7(2), pp. 155–164.
- Fitriana, D.N., Setifani, N.A. and Yusuf, A. (2020) ‘Perbandingan Algoritma Naïve Bayes, Svm, Dan Decision Tree Untuk Klasifikasi Sms Spam’, JUSIM (Jurnal Sistem Informasi Musirawas), 5(2).
- Ghani, M.A. and Sulaiman, H. (2023) Deteksi Spam Email dengan Metode Naive Bayes dan Particle Swarm Optimization (PSO), Jurnal Informatika dan Teknologi.
- Hamzah, A. and Marsita, B.D. (2012) Aspek-Aspek Pidana dibidang Komputer. Jakarta: Sinar Grafika.
- Hamzah, M.B. (2021) ‘Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting’, Journal of Advances in Information Systems and Technology, 3(1).
- Isnain, A.R., Marga, N.S. and Alita, D. (2021) ‘Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm’, IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(1), p. 55.
- Juanita, S. (2020) ‘Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes’, Jurnal Media Informatika Budidarma, 4(3).
- Khoirunnisa, F. and Februariyanti, H. (2022) ‘Analisis Sentimen Kualitas Layanan Google Meet Menggunakan Naïve Bayes Classifiers Dan Association’, semanTIK, 8(1), p. 35.
- Liu, H. et al. (2021) ‘Conversational query rewriting with self-supervised learning’, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Institute of Electrical and Electronics Engineers Inc.,
- Mujahidin, S. et al. (2022) ‘Bianglala Informatika Implementasi Analisis Sentimen Opini Publik Mengenai Sirkuit Internasional Mandalika Pada Twitter Menggunakan Metode Multinomial Naïve Bayes Classifier’, Jurnal Bianglala Informatika, 10(2).
- Nanti Pikir, B. et al. (2021) ‘Sentiment Analysis of Technology Utilization by Pekanbaru City Government Based on Community Interaction in Social Media’, Journal Of Artificial Intelligence and Application (JAIA), 2(1).
- Nurhazizah, E., Nur Ichsan, R. and Widiyanesti, S. (2022) ‘Analisis Sentimen Dan Jaringan Sosial Pada Penyebaran Informasi Vaksinasi di Twitter’, Jurnal Swabumi, 10(1), p. 2022.
- Pang, B. and Lee, L. (2004) ‘A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts’.
- Pebrianto, R. et al. (2022) ‘Analisis Sentimen Twitter Terhadap Menteri Indonesia Dengan Algoritma Support Vector Machine Dan Naive Bayes’, Jurnal Elektro dan Informatika, 17(1).
- Proceedings of The 3rd Workshop on Deep Learning Approaches for Low-Resource NLP (2022).
- Salim, E. and Solichin, A. (2022) ‘Analisis Sentimen Pada Media Sosial Twitter Terhadap Pelayanan Dinas Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes’, Indonesia Journal Information System (IDEALIS), 5(2).
- Salloum, S. et al. (2022) ‘A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques’, IEEE Access. Institute of Electrical and Electronics Engineers Inc
- Samsir et al. (2021) ‘Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes’, Jurnal Media Informatika Budidarma, 5(1).
- Santy, S., Rani, A. and Choudhury, M. (2021) ‘Use of Formal Ethical Reviews in NLP Literature: Historical Trends and Current Practices’, ACL-IJCNLP.
- Sasmita, A., Pradnyana, G.A. and Divayana, D.G.H. (2022) ‘Pengembangan Sistem Analisis Sentimen Untuk Evaluasi Kinerja Dosen Universitas Pendidikan Ganesha Dengan Metode Naïve Bayes’, JST (Jurnal Sains dan Teknologi), 11(2).
- Septiana, R.D., Susanto, A.B. and Tukiyat (2021) ‘Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic Dan Particle Swarm Optimization’, Jurnal Sistem Komputer dan Kecerdasan Buatan, 5(1).
References
Al-Garadi, M.A.; et al. (2022) ‘Citation: The Role of Natural Language Processing during the COVID-19 Pandemic: Health Applications, Opportunities, and Challenges’, MDPI Healthcare [Preprint].
AMT (2023) 6 Kasus Cybercrime di Indonesia yang Menyerang Server.
Chatterjee, A. et al. (2021) ‘Knowledge graphs for covid-19: An exploratory review of the current landscape’, Journal of Personalized Medicine. MDPI AG.
Dwison Alizah, M. et al. (2020) ‘Sentimen Analisis Terkait Lockdown pada Sosial Media Twitter’, IJSE-Indonesian Journal on Software Engineering, 6(2),
Fathonah, F. and Herliana, A. (2021) ‘Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes’, Jurnal Sains dan Informatika, 7(2), pp. 155–164.
Fitriana, D.N., Setifani, N.A. and Yusuf, A. (2020) ‘Perbandingan Algoritma Naïve Bayes, Svm, Dan Decision Tree Untuk Klasifikasi Sms Spam’, JUSIM (Jurnal Sistem Informasi Musirawas), 5(2).
Ghani, M.A. and Sulaiman, H. (2023) Deteksi Spam Email dengan Metode Naive Bayes dan Particle Swarm Optimization (PSO), Jurnal Informatika dan Teknologi.
Hamzah, A. and Marsita, B.D. (2012) Aspek-Aspek Pidana dibidang Komputer. Jakarta: Sinar Grafika.
Hamzah, M.B. (2021) ‘Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting’, Journal of Advances in Information Systems and Technology, 3(1).
Isnain, A.R., Marga, N.S. and Alita, D. (2021) ‘Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm’, IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(1), p. 55.
Juanita, S. (2020) ‘Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes’, Jurnal Media Informatika Budidarma, 4(3).
Khoirunnisa, F. and Februariyanti, H. (2022) ‘Analisis Sentimen Kualitas Layanan Google Meet Menggunakan Naïve Bayes Classifiers Dan Association’, semanTIK, 8(1), p. 35.
Liu, H. et al. (2021) ‘Conversational query rewriting with self-supervised learning’, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Institute of Electrical and Electronics Engineers Inc.,
Mujahidin, S. et al. (2022) ‘Bianglala Informatika Implementasi Analisis Sentimen Opini Publik Mengenai Sirkuit Internasional Mandalika Pada Twitter Menggunakan Metode Multinomial Naïve Bayes Classifier’, Jurnal Bianglala Informatika, 10(2).
Nanti Pikir, B. et al. (2021) ‘Sentiment Analysis of Technology Utilization by Pekanbaru City Government Based on Community Interaction in Social Media’, Journal Of Artificial Intelligence and Application (JAIA), 2(1).
Nurhazizah, E., Nur Ichsan, R. and Widiyanesti, S. (2022) ‘Analisis Sentimen Dan Jaringan Sosial Pada Penyebaran Informasi Vaksinasi di Twitter’, Jurnal Swabumi, 10(1), p. 2022.
Pang, B. and Lee, L. (2004) ‘A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts’.
Pebrianto, R. et al. (2022) ‘Analisis Sentimen Twitter Terhadap Menteri Indonesia Dengan Algoritma Support Vector Machine Dan Naive Bayes’, Jurnal Elektro dan Informatika, 17(1).
Proceedings of The 3rd Workshop on Deep Learning Approaches for Low-Resource NLP (2022).
Salim, E. and Solichin, A. (2022) ‘Analisis Sentimen Pada Media Sosial Twitter Terhadap Pelayanan Dinas Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes’, Indonesia Journal Information System (IDEALIS), 5(2).
Salloum, S. et al. (2022) ‘A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques’, IEEE Access. Institute of Electrical and Electronics Engineers Inc
Samsir et al. (2021) ‘Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes’, Jurnal Media Informatika Budidarma, 5(1).
Santy, S., Rani, A. and Choudhury, M. (2021) ‘Use of Formal Ethical Reviews in NLP Literature: Historical Trends and Current Practices’, ACL-IJCNLP.
Sasmita, A., Pradnyana, G.A. and Divayana, D.G.H. (2022) ‘Pengembangan Sistem Analisis Sentimen Untuk Evaluasi Kinerja Dosen Universitas Pendidikan Ganesha Dengan Metode Naïve Bayes’, JST (Jurnal Sains dan Teknologi), 11(2).
Septiana, R.D., Susanto, A.B. and Tukiyat (2021) ‘Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic Dan Particle Swarm Optimization’, Jurnal Sistem Komputer dan Kecerdasan Buatan, 5(1).