Main Article Content

Abstract

The increase in demand for goods made from wood cannot be limited, especially the demand for table furniture, cupboards and so on. Along with development, teak wood production has shifted to superior types of teak wood because the growth period is faster, but this condition means that the quality of teak wood is not like the old type of teak wood. Difficulty in seeing the quality of wood is a problem faced by craftsmen and furniture makers. The aim of this research is to determine the quality of wood species which are divided into 3 class categories, namely class A, class B and class C. To produce a classification of wood quality, researchers use the KNN method by carrying out HSV color segmentation then analyzing the color value of each image pixel based on the tolerance value on HSV color dimensions. The results of this research were using 65 teak wood training data for each class. Testing was carried out using 27 teak wood test data with an accuracy level of 85.19%, precision reaching 85.46%, recall reaching 85.18% and F1 score reaching 85.3%.

Keywords

Teak wood image processing classification KNN HSV

Article Details

References

  1. Akmal, A., (2010). Kayu Olahan. PT Gramedia Pustaka Utama.
  2. Anatasya, A. E. F., Wahyuningsih, P., Jalil, A., (2022), Design of Devices For Monitoring The Number of Public Space Visitor Based On Image Processing Using Binary Image Comparison Method, Jurnal Elektro Luceat, vol. 8(1), pp. 68-75.
  3. Areni, I. S., Amirullah, I., Arifin, N., (2019), Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV, Jurnal Penelitian Enjiniring (JPE), vol. 23(2), pp. 113-116.
  4. Elfan, J., Andreswari, D., Anggriani, K., (2016), Sistem Pendukung Keputusan Pemilihan Jenis Kayu untuk Mebel dengan Metode Weight Product (WP) dan Technique For Order Preference By Similarity to Ideal Solution (TOPSIS), Jurnal Rekursif, vol. 4(3), pp. 301-310.
  5. Fiqri, H., Razak, M., Umar, N., (2022), Citra Digital untuk Klasifikasi Kualitas Udang Windu Menggunakan Algoritma GLCM dan K-Nearest Neighbor, Jurnal Informatika, vol. 9(2), pp. 93-102.
  6. Johar, A., Yanosma, D., Anggriani, K., (2016), Implementasi Metode K-Nearest Neighbor (KNN) dan Simple Additive Weighting (SAW) Dalam Pengambilan Keputusan Seleksi Penerimaan Anggota Paskibraka, Jurnal Pseudocode, vol. III(2), pp. 98-112.
  7. Jumadi, J., Yupianti., Sartika, D., (2021), Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering, Jurnal Sains dan Teknologi, vol. 10(2), pp. 148-156.
  8. Kristiana, T., Alfian, F., (2020), Pemilihan Kualitas Kayu Terbaik Pada Pt. Rumah Kayu Kita Dengan Metode Weighted Product. JSAI: Journal Scientific and Applied Informatics, vol. 3(3), pp. 70-76.
  9. Marsoem, S. N., Prasetyo, V. E., Sulistyo, J., Sudaryono, S., Lukmandaru, G., (2014), Studi Mutu Kayu Jati di Hutan Rakyat Gunungkidul III. Sifat Fisika Kayu, Jurnal Ilmu Kehutanan, vol. 8(2), pp. 75-88.
  10. Martawijaya, A., Kosasi, K., Kartasujana, I., Pawira, S., (2005), Atlas Kayu Indonesia: Jilid I, Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor.
  11. Muhammad, D. I., Ermatita., Falih, N., (2021), Penggunaan K-Nearest Neighbor (KNN) untuk mengklasifikasi citra Belimbing Berdasarkan Fitur Warna, Jurnal INFORMATIK, vol. 17(1), pp. 9-16.
  12. Pranata, Y. A., Suryoatmono, B., (2019). Struktur kayu Analisis dan Desain Dengan LRFD. PT Remaja Rosdakarya, Bandung
  13. Purnomo, D. E. H., Sunardiansyah, Y. A., (2021), Implementasi Metode Analytical Hierarchy Process (AHP) untuk Evaluasi Pemasok Kayu Pada Industri Furnitur, JISO: Journal Of Industrial And Systems Optimization, vol. 4(1), pp. 1-7.
  14. Puspitasari, N., Septiarini, A., Aliudin, A. R., (2023), Metode K-Nearest Neighbor dan Fitur Warna Untuk Klasifikasi Daun Sirih Berdasarkan Citra Digital, Jurnal PROSISKO, vol. 10(2), pp. 165-172.
  15. Rismayani, Wahyuningsih, P., Ramadhani, S. F., Jalil, A., Putra, P. H., Riadi, A., Taju, S. W., Selvida, D., Saputra, H., Yuliansyah, H., Muzakkir, I., (2024), Computer Vision, Yayasan Kita Menulis, Januari 2022
  16. Sari, R. E., (2015), Penentuan Kualitas Kayu untuk kerajinan Meubel dengan Metode AHP, Seminar Nasional Teknologi Informasi dan Multimedia 2015, STMIK AMIKOM Yogyakarta, 6-8 Februari 2015.
  17. Wahyudi, I., Priadi, T., Rahayu, I. S., (2014), Karakteristik dan Sifat-sifat Dasar Kayu Jati Unggul Umur 4 dan 5 Tahun Asal Jawa Barat. Jurnal Ilmu Pertanian Indonesia (JIPI), vol. 19(1), pp. 50-56
  18. Waliyansyah, R. R., Fitriyah, C., (2019), Perbandingan Akurasi Klasifikasi Citra Kayu Jati Menggunakan Metode Naïve Bayes dan k-Nearest Neighbor (k-NN), JEPIN: Jurnal Edukasi dan Penelitian Informatika, vol. 5(2), pp. 157-163.
  19. Yuwono, I. N., Krismanto, R., Sugianto, A., (2022), Penentuan Kualitas Kayu Jati Secara Visual Menggunakan Metode Learning Vector Quantization, Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, vol. 6(1), pp.7-14.