Main Article Content

Abstract

Covid-19 is a disease that infects the human respiratory system and has a high-speed transmission ability. West Java Province is one of the areas affected by the Covid-19 pandemic. The number of people confirmed with the Covid-19 virus in West Java is still increasing daily. Therefore, it is necessary to group the level of vulnerability to the spread of Covid-19, especially in West Java Province, using data from the official website of the West Java Provincial Government using 5 attributes, namely district_city_name, total_confirmation, confirmed_recovered, confirmed_death, and confirmed_active. This study aims to identify the pattern of the spread of Covid-19 to support more effective decision-making at the regional level. The research method involves a data mining process, namely business understanding, data understanding, data preparation, modeling, evaluation, and deployment based on the CRISP-DM methodology. The modeling process uses the K-Medoids algorithm with 3 clusters according to the government's color zone. The results of this study show 3 clusters, namely the green cluster is the minimum number of cases with 16 districts/cities. The yellow cluster is starting to be alert to the number of cases with 6 districts/cities. The red cluster is a very severe case with 5 districts/cities. The results of the Silhouette Coefficient test that tested n_cluster = 2, 3, 4, and 5 showed that n_cluster = 3 is the best cluster with a value of 0.77.

Keywords

Clustering Covid-19 Data Mining K-Medoids Silhoutte Coefficient

Article Details

References

  1. Alfiah, F., Almadayani, A., Al Farizi, D., & Widodo, E. (2022). Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan di Jawa Timur Tahun 2020. Jurnal Ilmiah Sains, 22(1), 1–7. https://doi.org/10.35799/jis.v22i1.35911
  2. Aria, R. R. (2021). Implementation of the K-Medoids Algorithm for Data Clustering of Covid 19 Cases in West Java. International Journal of Information System & Technology Akreditasi, 5(1), 11–16. https://doi.org/10.30645/ijistech.v5i1.109
  3. Atmaja, E. H. S. (2019). Implementation of k-Medoids Clustering Algorithm to Cluster Crime Patterns in Yogyakarta. International Journal of Applied Sciences and Smart Technologies, 1(1), 33–44. https://doi.org/10.24071/ijasst.v1i1.1859
  4. Azhari, R., Hartama, D., Lubis, M. R., Nasution, D. F., & Windarto, A. P. (2023). Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering. Journal of Informatics, Electrical and Electronics Engineering, 3(2), 221–235. https://doi.org/10.47065/jieee.v3i2.1760
  5. Bagaskara, B. (2023, Desember 22). Waspada! COVID-19 di Jabar Meningkat Jelang Nataru. detikJabar. https://www.detik.com/jabar/berita/d-7103313/waspada-covid-19-di-jabar-meningkat-jelang-nataru
  6. Bahri, S., & Marisa Midyanti, D. (2023). Penerapan Metode K-Medoids Untuk Pengelompokan Mahasiswa Berpotensi Drop Out. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 10(1), 165–172. https://doi.org/10.25126/jtiik.2023106643
  7. Buulolo, E. (2020). Data Mining Untuk Perguruan Tinggi. Deepublish.
  8. Darmawan, A. D. (2023, Agustus 14). Total Kematian Covid-19 Indonesia Urutan Ke-2 di Asia. databoks. https://databoks.katadata.co.id/datapublish/2023/08/14/total-kematian-covid-19-indonesia-urutan-ke-2-di-asia
  9. Fajriana. (2021). Analisis Algoritma K-Medoids pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 7(2), 263–269. https://doi.org/10.26418/jp.v7i2.47795
  10. Fira, A., Rozikin, C., & Garno. (2021). Komparasi Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Penyebaran Covid-19 di Indonesia. Journal of Applied Informatics and Computing (JAIC), 5(2), 133–138. https://doi.org/10.30871/jaic.v5i2.3286
  11. Hardiani, T. (2022). Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 11(2), 156–165. https://doi.org/10.23887/janapati.v11i2.45376
  12. Muflikhah, L., Ratnawati, D. E., & Putri, R. R. M. (2018). Data Mining. UB Press.
  13. Mulaab. (2017). Data Mining : Konsep dan Aplikasi (I). Media Nusa Creative.
  14. Rokom. (2023, Mei 9). Darurat Kesehatan Global Dicabut, Kemenkes : Bukan Berarti Pandemi COVID-19 Berakhir. Kementerian Kesehatan RI. https://www.tribunnews.com/seleb/2023/05/12/darurat-kesehatan-global-dicabut-kemenkes-covid-19-belum-hilang
  15. Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. SinkrOn, 5(1), 116. https://doi.org/10.33395/sinkron.v5i1.10649
  16. Saputra, I., & Kristiyanti, D. A. (2022). Machine Learning Untuk Pemula. INFORMATIKA.
  17. Sari, B. N., & Primajaya, A. (2020). Penerapan Clustering Dbscan Untuk Pertanian Padi di Kabupaten Karawang. Jurnal Informatika dan Komputer, 4(1), 51–58. https://doi.org/10.30865/mib.v4i1.1784
  18. Wijaya, A. P., Premana, A., & Ramdhan, N. A. (2022). Penerapan Algoritma K-Means pada Klasterisasi Data kawalcovid19.id. Prosiding Sains Nasional dan Teknologi, 12(1), 479. https://doi.org/10.36499/psnst.v12i1.7294
  19. Yadav, S. (2023, Juni 14). Silhouette Coefficient Explained with a Practical Example: Assessing Cluster Fit. Medium. https://medium.com/@Suraj_Yadav/silhouette-coefficient-explained-with-a-practical-example-assessing-cluster-fit-c0bb3fdef719