Main Article Content

Abstract

Lung cancer is one of the deadliest types of cancer worldwide, making early detection crucial to improving patient survival rates. One of the primary methods for detecting lung cancer is through Computed Tomography (CT) scan images. However, automated analysis of these images faces challenges due to image quality being affected by noise and low contrast. This study aims to develop a lung cancer classification model from CT scan images using the Extreme Learning Machine (ELM) algorithm and Gray Level Co-occurrence Matrix (GLCM) feature extraction, supported by Histogram Equalization techniques to enhance image quality. Histogram Equalization is employed to improve image contrast, facilitating the extraction of texture features from GLCM, such as contrast, homogeneity, energy, and entropy. ELM was chosen for its speed and accuracy in handling complex medical image classification tasks. The study results demonstrate that the proposed model successfully enhances classification performance with an accuracy of 91.06%. The combination of ELM and Histogram Equalization techniques produces an efficient and accurate classification system for detecting lung cancer from CT scan images.

Keywords

CT Scan Extreme Learning Machine GLCM Histogram Equalization Lung Cancer

Article Details

References

  1. Ahmad, I., Rahmanto, Y., Borman, R. I., Rossi, F., Jusman, Y., & Alexander, A. D. (2022). Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model. International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 12–17.
  2. Apsari, R., Aditya, Y. N., Purwanti, E., & Arof, H. (2020). Development of lung cancer classification system for computed tomography images using artificial neural network. International Conference on Mathematics, Computational Sciences and Statistics, 1–9.
  3. Borman, R. I., Ahmad, I., & Rahmanto, Y. (2022). Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function. Bulletin of Informatics and Data Science, 1(1), 6–13.
  4. Borman, R. I., Fernando, Y., & Yudoutomo, Y. E. P. (2022). Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 339–345.
  5. Borman, R. I., Napianto, R., Nugroho, N., Pasha, D., Rahmanto, Y., & Yudoutomo, Y. E. P. (2021). Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants. International Conference on Computer Science, Information Technology and Electrical Engineering (ICOMITEE), 46–50.
  6. Borman, R. I., Rossi, F., Alamsyah, D., Nuraini, R., & Jusman, Y. (2022). Classification of Medicinal Wild Plants Using Radial Basis Function Neural Network with Least Mean Square. International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS).
  7. Chen, Y. (2020). Identification of Tea Leaf Based on Histogram Equalization, Gray-Level Co-Occurrence Matrix and Support Vector Machine Algorithm BT - Multimedia Technology and Enhanced Learning. Multimedia Technology and Enhanced Learning, 3–16.
  8. Fendriani, Y., Kharisma, R., & Peslinof, M. (2023). Analisis Perbandingan Variasi Filter Pada Deteksi Tepi Menggunakan Metode Canny Terhadap Citra CT-Scan Kanker Paru-Paru. Journal Online of Physics, 8(2), 77–81.
  9. Firdaus, Q., Sigit, R., Harsono, T., & Anwar, A. (2020). Lung Cancer Detection Based on CT-Scan Images with Detection Features Using Gray Level Co-Occurrence Matrix (GLCM) and Support Vector Machine (SVM) Methods. International Electronics Symposium (IES), 643–648.
  10. Hany, M. (2020). Chest CT-Scan images Dataset. Kaggle.
  11. Hizriadi, A., Purnamawati, S., & Angreni, F. (2023). Implementation of Extreme Learning Machine for Classification of Retina Ablasio Results on Retina Fundus Images. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(4), 371–376.
  12. Hossain, M. S., Basak, N., Mollah, M. A., Nahiduzzaman, M., Ahsan, M., & Haider, J. (2025). Ensemble-based multiclass lung cancer classification using hybrid CNN-SVD feature extraction and selection method. PLoS ONE, 20(3), 1–30. https://doi.org/10.1371/journal.pone.0318219
  13. Ihsan, M. F., & Sunyoto, A. (2022). Gray Level Co-Occurrence Matrix Algorithm and Backpropagation Neural Networks for Herbal Plants Identification. International Conference on Information and Communications Technology (ICOIACT), 373–378.
  14. Kurnia, H., & Hidayat, T. (2023). Penajaman Kualitas Citra Digital Menggunakan Histogram Equalization. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 6(9), 1–7.
  15. Kurniabudi, Stiawan, D., Darmawijoyo, Bin Idris, M. Y., Bamhdi, A. M., & Budiarto, R. (2020). CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection. IEEE Access, 8, 132911–132921.
  16. Manalu, R. E. (2021). Analisis Metode Histogram Equalization Dalam Proses Perbaikan Gambar Closed Circuit Television (CCTV). TIN: Terapan Informatika Nusantara, 2(1), 1–5.
  17. Najiyah, I., & Topiq, S. (2021). Klasifikasi Jenis Kendaraan Roda Empat Menggunakan Extreme Learning Machine. Jurnal Responsif, 3(2), 199–206.
  18. Nugroho, B., Utami, A. S., Ratnaningsih, D. K., & Handis, L. A. (2023). Perbandingan Gambaran CT Scan Paru Perokok dan Non Perokok Pasien Kanker Paru. Jurnal Kesehatan, 2, 1–22.
  19. Putri, E. P., Nurhasanah, N., Wahyuni, D., Hasanuddin, H., Adriat, R., & Arsyad, Y. M. (2024). Klasifikasi Keganasan Kanker Paru Menggunakan Algoritma Propagasi Balik pada Citra CT-Scan. Jurnal Ilmu Dasar, 25(2), 111–118.
  20. Rumandan, R. J., Nuraini, R., Sadikin, N., & Rahmanto, Y. (2022). Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine. Journal of Computer System and Informatics (JoSYC), 4(1), 145–154. https://doi.org/10.47065/josyc.v4i1.2586
  21. Rustam, Z., Purwanto, A., Hartini, S., & Saragih, G. S. (2021). Lung Cancer Classification Using Fuzzy C-Means and Fuzzy Kernel C-Means Based on CT Scan Image. International Journal of Artificial Intelligence (IJ-AI), 10(2), 11591.
  22. Sugiharto, S., Simanjuntak, R. A. P. S., & Larissa, O. (2021). Kanker Paru, Faktor Risiko dan Pencegahannya. Seminar Nasional Hasil Penelitian Dan Pengabdian Kepada Masyaraka, 613–620.
  23. Ulga, S., Muttaqin, A., & Fitriyani, D. (2024). Pengaruh Filter Lowpass Terhadap Kualitas Citra CT-Scan Paru-Paru. Jurnal Fisika Unand (JFU), 13(4), 587–593.
  24. Veriarinal, V., & Gunawan, C. (2024). Identifikasi Nilai Mata Uang Logam Menggunakkan Metode Otsu Thresholding. Kohesi: Jurnal Multidisiplin Saintek, 2(11), 1–9.
  25. Wahid, R. R., Anggraeni, F. T., & Nugroho, B. (2023). Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging. Seminar Nasional Informatika Bela Negara (SANTIKA), 16–20. https://doi.org/10.33005/santika.v1i0.45
  26. Winarno, G., Irsal, M., Karenina, C. A., Sari, G., & Hidayati, R. N. (2022). Metode Histogram Equalization untuk Peningkatan Kualitas Citra dengan Menggunakan Studi Phantom Lumbosacral. Jurnal Kesehatan Vokasional, 7(2), 104–110.
  27. Yel, M. B., Mulyana, D. I., & Hidayat, W. (2023). Klasifikasi Jenis Ikan Neon Dengan Ekstraksi Fitur GLCM dan Algoritma Extreme Learning Machine. Jurnal Ilmiah Teknologi Informasi Dan Komunikasi (JTIK), 14(2), 228–238.