Main Article Content

Abstract

This study explores the use of the SAMME algorithm to develop a predictive model for identifying various stages of cirrhosis. The dataset includes 418 records with 20 attributes, targeting the classification of cirrhosis stages: C (censored), CL (censored due to liver transplantation), and D (death). The model achieved an overall accuracy of 94%, demonstrating high precision and recall for classes C and D. However, the precision for class CL was lower, indicating a tendency to over-predict this stage. These results validate the SAMME algorithm's potential to enhance diagnostic accuracy while highlighting the need for further refinement to address class imbalance and feature overlap. This research underscores the value of machine learning in early diagnosis and personalized treatment, suggesting future work on larger, balanced datasets and advanced feature engineering to improve model robustness and reliability in clinical applications.

Keywords

cirrhosis identification predictive modeling SAMME algorithm machine learning in healthcare multi-class classification

Article Details

References

  1. A. Singh, P. Nath, V. Singhal, D. Anand, Kavita, S. Verma, & T. -P. Hong. (2020). A New Clinical Spectrum for the Assessment of Nonalcoholic Fatty Liver Disease Using Intelligent Methods. IEEE Access, 8, 138470–138480. https://doi.org/10.1109/ACCESS.2020.3011289
  2. Akter, S., Shekhar, H. U., & Akhteruzzaman, S. (2021). Application of Biochemical Tests and Machine Learning Techniques to Diagnose and Evaluate Liver Disease. Advances in Bioscience and Biotechnology, 12(06), 154–172. https://doi.org/10.4236/abb.2021.126011
  3. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
  4. Blanes-Vidal, V., Lindvig, K. P., Thiele, M., Nadimi, E. S., & Krag, A. (2022). Artificial Intelligence Outperforms Standard Blood-Based Scores in Identifying Liver Fibrosis Patients in Primary Care. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06998-8
  5. Chen, K., Sun, J., Shen, J., Luo, J., Zhang, X., Pan, X., Wu, D., Zhao, Y., Bento, M., Ren, Y., & Pu, X. (2022). GCN-MIF: Graph Convolutional Network with Multi-Information Fusion for Low-dose CT Denoising (arXiv:2105.07146). arXiv. http://arxiv.org/abs/2105.07146
  6. Chen, Y., Lin, C.-Y., Yen, H., Su, P., Zeng, Y.-H., Huang, S., & Liu, I.-L. (2022). Machine-Learning Algorithm for Predicting Fatty Liver Disease in a Taiwanese Population. Journal of Personalized Medicine, 12(7), 1026. https://doi.org/10.3390/jpm12071026
  7. Da, B. L., Surana, P., Kleiner, D. E., Heller, T., & Koh, C. (2020). The Delta-4 Fibrosis Score (D4FS): A Novel Fibrosis Score in Chronic Hepatitis D. Antiviral Research, 174, 104691. https://doi.org/10.1016/j.antiviral.2019.104691
  8. Ding, H., Fawad, M., Xu, X., & Hu, B. (2022). A Framework for Identification and Classification of Liver Diseases Based on Machine Learning Algorithms. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.1048348
  9. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y.-S., Hu, S., Chen, Y., Chan, C.-M., Chen, W., Yi, J., Zhao, W., Wang, X., Liu, Z., Zheng, H., Chen, J., Liu, Y., Tang, J., Li, J., & Sun, M. (2022). Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-Trained Language Models. https://doi.org/10.21203/rs.3.rs-1553541/v1
  10. Duhayyim, M. A., Mengash, H. A., Marzouk, R., Nour, M. K., Mahgoub, H., Althukair, F., & Mohamed, A. (2022). Hybrid Rider Optimization With Deep Learning Driven Biomedical Liver Cancer Detection and Classification. Computational Intelligence and Neuroscience, 2022, 1–11. https://doi.org/10.1155/2022/6162445
  11. Gupta, N., Mujumdar, S., Patel, H., Masuda, S., Panwar, N., Bandyopadhyay, S., Mehta, S., Guttula, S., Afzal, S., Mittal, R. S., & Munigala, V. (2021). Data Quality for Machine Learning Tasks. https://doi.org/10.1145/3447548.3470817
  12. Huang, C., Liu, L., Wang, H., Fang, M., Feng, H., Li, Y., Wang, M., Lin, T., Xiao, X., Wang, Z., Xu, X., He, Y., & Gao, C. (2021). Serum N-Glycan Fingerprint Nomogram Predicts Liver Fibrosis: A Multicenter Study. Clinical Chemistry and Laboratory Medicine (Cclm), 59(6), 1087–1097. https://doi.org/10.1515/cclm-2020-1588
  13. Iyer, A., Loh, Z., Fitzsimmons, R. L., Reid, R. C., Ramnath, D., Clouston, A. D., Irvine, K. M., Powell, E. E., Schroder, K., Stow, J. L., Sweet, M. J., & Fairlie, D. P. (2019). Histone Deacetylase Inhibitors Attenuate Hepatic Fibrosis Through Suppression of Group 2 Innate Lymphoid Cells and Type 2 Inflammation. The Faseb Journal, 33(S1). https://doi.org/10.1096/fasebj.2019.33.1_supplement.505.19
  14. Kim, S., Park, S., & Lee, H. (2023). Machine Learning for Predicting Hepatitis B or C Virus Infection in Diabetic Patients. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-49046-9
  15. Kirubakaran, J., Venkatesan, G. K. D. P., Baskar, S., Kumaresan, M., & Annamalai, S. (2019). RETRACTED ARTICLE: Prediction of Cirrhosis Disease From Radiologist Liver Medical Image Using Hybrid Coupled Dictionary Pairs on Longitudinal Domain Approach. Multimedia Tools and Applications, 79(15–16), 9901–9919. https://doi.org/10.1007/s11042-019-7259-3
  16. Kuo, Y.-H., Kee, K., Hsu, N.-T., Wang, J., Hsiao, C., Chen, Y., & Lu, S. (2019). Using AST-platelet Ratio Index and Fibrosis 4 Index for Detecting Chronic Hepatitis C in a Large-Scale Community Screening. Plos One, 14(10), e0222196. https://doi.org/10.1371/journal.pone.0222196
  17. Lee, J. H., Joo, I., Kang, T. W., Paik, Y. H., Sinn, D. H., Ha, S. Y., Kim, K., Choi, C.-H., Lee, G., Yi, J., & Bang, W. C. (2019). Deep Learning With Ultrasonography: Automated Classification of Liver Fibrosis Using a Deep convolutional Neural Network. European Radiology, 30(2), 1264–1273. https://doi.org/10.1007/s00330-019-06407-1
  18. Madsen, B. S., Thiele, M., Detlefsen, S., Sørensen, G. L., Kjærgaard, M., Møller, L. S., Rasmussen, D. N., Schlosser, A., Holmskov, U., Trebicka, J., Sørensen, G. L., & Krag, A. (2020). Prediction of Liver Fibrosis Severity in Alcoholic Liver Disease by Human Microfibrillar‐associated Protein 4. Liver International, 40(7), 1701–1712. https://doi.org/10.1111/liv.14491
  19. Menegotto, A. B., Becker, C. D. L., & Cazella, S. C. (2021). Computer-Aided Diagnosis of Hepatocellular Carcinoma Fusing Imaging and Structured Health Data. Health Information Science and Systems, 9(1). https://doi.org/10.1007/s13755-021-00151-x
  20. Mostafa, F., Hasan, E., Williamson, M., & Khan, H. (2021). Statistical Machine Learning Approaches to Liver Disease Prediction. Livers, 1(4), 294–312. https://doi.org/10.3390/livers1040023
  21. Nam, J. Y., Sinn, D. H., Bae, J. H., Jang, E. S., Kim, J. W., & Jeong, S. H. (2020). Deep Learning Model for Prediction of Hepatocellular Carcinoma in Patients With HBV-related Cirrhosis on Antiviral Therapy. Jhep Reports, 2(6), 100175. https://doi.org/10.1016/j.jhepr.2020.100175
  22. Naseem, R., Khan, B., Shah, M. A., Wakil, K., Khan, A., Alosaimi, W., Uddin, I., & Alouffi, B. (2020). Performance Assessment of Classification Algorithms on Early Detection of Liver Syndrome. Journal of Healthcare Engineering, 2020, 1–13. https://doi.org/10.1155/2020/6680002
  23. Nguyen, D.-K., Lan, C.-H., & Chan, C.-L. (2021). Deep Ensemble Learning Approaches in Healthcare to Enhance the Prediction and Diagnosing Performance: The Workflows, Deployments, and Surveys on the Statistical, Image-Based, and Sequential Datasets. International Journal of Environmental Research and Public Health, 18(20), 10811. https://doi.org/10.3390/ijerph182010811
  24. Nia, N. G., Kaplanoğlu, E., & Nasab, A. (2023). Evaluation of Artificial Intelligence Techniques in Disease Diagnosis and Prediction. Discover Artificial Intelligence, 3(1). https://doi.org/10.1007/s44163-023-00049-5
  25. Philip, G., Djerboua, M., Carlone, D., & Flemming, J. A. (2020). Validation of a Hierarchical Algorithm to Define Chronic Liver Disease and Cirrhosis Etiology in Administrative Healthcare Data. Plos One, 15(2), e0229218. https://doi.org/10.1371/journal.pone.0229218
  26. R. Haluška, J. Brabec, & T. Komárek. (2022). Benchmark of Data Preprocessing Methods for Imbalanced Classification. 2022 IEEE International Conference on Big Data (Big Data), 2970–2979. https://doi.org/10.1109/BigData55660.2022.10021118
  27. Rajesh, S., George, T., Philips, C. A., Ahamed, R., Kumbar, S., Mohan, N., Mohanan, M., & Augustine, P. (2020). Transjugular Intrahepatic Portosystemic Shunt in Cirrhosis: An Exhaustive Critical Update. World Journal of Gastroenterology, 26(37), 5561–5596. https://doi.org/10.3748/wjg.v26.i37.5561
  28. Sarker, I. H. (2021). Data Science and Analytics: An Overview From Data-Driven Smart Computing, Decision-Making and Applications Perspective. Sn Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8
  29. Schawkat, K., Ciritsis, A., Ulmenstein, S. von, Honcharova-Biletska, H., Jüngst, C., Weber, A., Gubler, C., Mertens, J. C., & Reiner, C. S. (2020). Diagnostic Accuracy of Texture Analysis and Machine Learning for Quantification of Liver Fibrosis in MRI: Correlation With MR Elastography and Histopathology. European Radiology, 30(8), 4675–4685. https://doi.org/10.1007/s00330-020-06831-8
  30. Shahhosseini, M., & Pham, H. (2022). Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems. Machine Learning With Applications, 7, 100251. https://doi.org/10.1016/j.mlwa.2022.100251
  31. Shekhar, S., Fields, G., Ghavamzadeh, M., & Javidi, T. (2021). Adaptive Sampling for Minimax Fair Classification (arXiv:2103.00755). arXiv. http://arxiv.org/abs/2103.00755
  32. Shi, P., Qiu, J., Abaxi, S. M. D., Wu, H., Lo, F. P.-W., & Yuan, W. (2023). Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation. Diagnostics, 13(11), 1947. https://doi.org/10.3390/diagnostics13111947
  33. Shu, Z., Liu, W., Wu, H., Xiao, M., Wu, D. C., Cao, T., Ren, M., Jin-hua, T., Zhang, C., He, T., Li, X., Zhang, R., & Zhou, X. (2019). Symptom-Based Network Classification Identifies Distinct Clinical Subgroups of Liver Diseases With Common Molecular Pathways. Computer Methods and Programs in Biomedicine, 174, 41–50. https://doi.org/10.1016/j.cmpb.2018.02.014
  34. Singh, S., Hoque, S., Zekry, A., & Sowmya, A. (2023). Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review. Journal of Medical Systems, 47(1). https://doi.org/10.1007/s10916-023-01968-7
  35. Tanwar, N., & Rahman, K. F. (2021). Machine Learning in Liver Disease Diagnosis: Current Progress and Future Opportunities. Iop Conference Series Materials Science and Engineering, 1022(1), 012029. https://doi.org/10.1088/1757-899x/1022/1/012029
  36. Taylor-Weiner, A., Pokkalla, H., Han, L., Jia, C., Huss, R., Chung, C., Elliott, H., Glass, B., Pethia, K., Carrasco-Zevallos, O., Shukla, C., Khettry, U., Najarían, R. M., Taliano, R., Subramanian, G. M., Myers, R. P., Wapinski, I., Khosla, A., Resnick, M. B., … Younossi, Z. M. (2021). A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology, 74(1), 133–147. https://doi.org/10.1002/hep.31750
  37. Wang, Q., & Sun, D. (2021). The Improved AdaBoost Algorithms for Imbalanced Data Classification. Information Sciences, 563, 358–374. https://doi.org/10.1016/j.ins.2021.03.042
  38. Wang, Y., Li, X., Konanur, M., Konkel, B., Seyferth, E. R., Brajer, N., Liu, J., Bashir, M. R., & Lafata, K. (2023). Towards Optimal Deep Fusion of Imaging and Clinical Data via a Model‐based Description of Fusion Quality. Medical Physics, 50(6), 3526–3537. https://doi.org/10.1002/mp.16181
  39. Zhang, Z.-M., Tan, J., Wang, F., Dao, F., Zhang, Z.-Y., & Lin, H. (2020). Early Diagnosis of Hepatocellular Carcinoma Using Machine Learning Method. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00254