Isi Artikel Utama

Abstrak

In recent years, the development of prognostic and health management in engines and systems has grown rapidly, with one form of interaction being predicting the remaining useful life of aircraft turbofan engines. In this study, chose to use the Deep Learning RNN method with LSTM architecture.  And in its limitation, the C-MAPSS FD001 dataset is used as a modeling dataset in which there is complex multivariate data. The main objective in this analysis and modeling process is to obtain the remaining useful life prediction results that can be a benchmark in analyzing the Remaining Useful Life (RUL) of the turbofan engine. The test results involved many criteria and parameters that were tested. Analysis of the results shows that the model with learning rate criteria of 0.001, number of epochs of 50, hidden unit of 12, Min-max normalization method, and Adam optimizer tested can understand quite accurately the RUL data pattern and follow the movement of the predetermined RUL target. Although there is a decrease and a slight spike in the unit level of machines 81 to 84, with an error value in RMSE of 26.48, but overall the model can be considered optimal in learning the prediction pattern of the RUL target. This research shows that the RNN-LSTM model has great potential in aircraft turbofan engine prognostic applications.

Rincian Artikel

Biografi Penulis

Fitri Insani, Universitas Islam Negeri Sultan Syarif Kasim Riau

Fakultas Sains dan Teknologi

Referensi

  1. Aivaliotis, P., Georgoulias, K., Arkouli, Z., & Makris, S. (2019). Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP, 81(March), 417–422. https://doi.org/10.1016/j.procir.2019.03.072
  2. Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. In Knowledge Engineering Review (Vol. 34, Issue April 2020). https://doi.org/10.1017/S026988891800036X
  3. Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft Engine Run-To-Failure Dataset Under Real Flight Conditions. NASA Ames Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan-2
  4. Dudek, G., Pelka, P., & Smyl, S. (2022). A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2879–2891. https://doi.org/10.1109/TNNLS.2020.3046629
  5. Estimation, L., Karnik, R., Pandya, K., & Jha, S. (2023). Long Short-Term Memory Model for Remaining Usable. 2, 1–7.
  6. Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. In Journal of Manufacturing Systems. Elsevier. https://www.sciencedirect.com/science/article/pii/S0278612522000796
  7. Frederick, D. K., Decastro, J. A., & Litt, J. S. (2007). User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) - NASA Technical Reports Server (NTRS). October. https://ntrs.nasa.gov/citations/20070034949
  8. Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology (Singapore), 12(4), 1243–1257. https://doi.org/10.1007/s41870-020-00427-7
  9. Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
  10. Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
  11. Mu, Z., Ran, Y., Zhang, G., Wang, H., & Yang, X. (2021). Remaining useful life prediction method for machine tools based on meta-action theory. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(4), 580–590. https://doi.org/10.1177/1748006X211002544
  12. Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54(February). https://doi.org/10.1016/j.swevo.2020.100663
  13. Nurashila, S. S., Hamami, F., & Kusumasari, T. F. (2023). Perbandingan Kinerja Algoritma Recurrent Neural Network (Rnn) Dan Long Short-Term Memory (Lstm): Studi Kasus Prediksi Kemacetan Lalu Lintas Jaringan Pt Xyz. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(3), 864–877. https://doi.org/10.29100/jipi.v8i3.3961
  14. Perry, M. B. (2011). The Exponentially Weighted Moving Average. Wiley Encyclopedia of Operations Research and Management Science, October. https://doi.org/10.1002/9780470400531.eorms0314
  15. Ramasso, E., & Saxena, A. (2014). Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset. PHM 2014 - Proceedings of the Annual ConfereRamasso, E., & Saxena, A. (2014).
  16. Review and Analysis of Algorithmic Approaches Developed for Prognostics on CMAPSS Dataset. PHM 2014 - Proceedings of the Annual Conference of the Prognostics and Health Manageme, 612–622.
  17. Remadna, I., Terrissa, S. L., Zemouri, R., Ayad, S., & Zerhouni, N. (2020). Leveraging the Power of the Combination of CNN and Bi-Directional LSTM Networks for Aircraft Engine RUL Estimation. Proceedings - 2020 Prognostics and Health Management Conference, PHM-Besancon 2020, March 2021, 116–121. https://doi.org/10.1109/PHM-Besancon49106.2020.00025
  18. Rezaeianjouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement. https://www.sciencedirect.com/science/article/pii/S026322412030467X
  19. Ridla, M. A., Azise, N., & Rahman, M. (2023). Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport. Simkom, 8(1), 1–14. https://doi.org/10.51717/simkom.v8i1.103
  20. Saraswat, P., & Raj, S. (2022). Data Pre-Processing Techniques in Data Mining: a Review. International Journal of Innovative Research in Computer Science & Technology, 1, 122–125. https://doi.org/10.55524/ijircst.2022.10.1.22
  21. Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97(xxxx), 105524. https://doi.org/10.1016/j.asoc.2019.105524
  22. Thakkar, U. R. (2021). Remaining useful life prediction of a turbofan engine using deep layer recurrent neural networks. repository.library.carleton.ca. https://repository.library.carleton.ca/concern/etds/dj52w564c
  23. Venkatesh, B., & Anuradha, J. (2019). A review of Feature Selection and its methods. Cybernetics and Information Technologies, 19(1), 3–26. https://doi.org/10.2478/CAIT-2019-0001
  24. Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of …. https://doi.org/10.1080/00207543.2018.1552032
  25. Wei, K. (2023). Turbofan and turbojet engines: Working process and future development. Theoretical and Natural Science, 12(1), 114–119. https://doi.org/10.54254/2753-8818/12/20230447