Komparasi Algoritma K-Nearest Neighbor dan Naive Bayes pada Klasifikasi Tingkat Kualitas Udara Kota Tangerang Selatan
Abstract
The growth of technology and the impact of industrial activities on the earth have an influence on environmental changes, including changes that are felt are a decrease in air quality or air pollution which has an impact on the health of the human body. Based on this, this research aims to produce a model for solving air quality classification problems based on parameter indicators. A comparative evaluation was also carried out on the classification of the K-Nearest Neighbor and Naive Bayes algorithm methods on the air quality dataset in South Tangerang in 2022. At the same ratio in the classification process, the K-Nearest Neighbor algorithm got an accuracy value of 94.44% and the Naive Bayes algorithm got an accuracy value of 94.44%. Accuracy value 86.11%. From the results of testing the data, it can be concluded that the K-Nearest Neighbor algorithm has high accuracy compared to the Naive Bayes algorithm in air level classification.
Keywords
Full Text:
PDFReferences
Arifin, O., & Sasongko, T. B. (2018). Analisa perbandingan tingkat performansi metode support vector machine dan naïve bayes classifier. Seminar Nasional Teknologi Informasi Dan Multimedia 2018, 6(1), 67–72.
Budianita, A. (2023). Information Gain Berbasis Algoritma Naive Bayes Classifier Pada Pemodelan Prediksi Kelulusan. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 5(1), 1–10. https://doi.org/10.46772/intech.v5i1.1116
Dian, F., Emilia, Rizka, G. G., & Indrayatna, F. (2023). Klasifikasi Tingkat Pencemaran Udara Kota Jakarta Tahun 2021 Menggunakan Algoritma Decision Tree. Prosiding Nasional SNSA 2, 127–131.
Hana, F. M., Negara, D. S., & Khaqiqi, K. U. (2020). PERBANDINGAN ALGORITMA NEURAL NETWORK DENGAN LINIER DISCRIMINANT ANALYSIS (LDA) PADA KLASIFIKASI PENYAKIT DIABETES. Jurnal Bisnis Digitasl Dan Sistem Informasi Volume, 1, 1541–1541.
Jadhav, S. D., & Channe, H. P. (2013). Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques. In International Journal of Science and Research (IJSR) ISSN (Vol. 5). www.ijsr.net
Kusuma, S. F., Pawening, R. E., & Dijaya, R. (2017). Otomatisasi klasifikasi kematangan buah mengkudu berdasarkan warna dan tekstur. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 3(1), 17–23. https://doi.org/10.26594/register.v3i1.576
Novianti, B., Rismawan, T., & Bahri, S. (2016). Implementasi Data Mining Dengan Algoritma C4.5 Untuk Penjurusan Siswa (Studi Kasus: Sma Negeri 1 Pontianak). Jurnal Coding, Sistem Komputer Untan, 04(3), 75–84.
PP No 41 Tahun 1999. (n.d.). PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 41 TAHUN 1999 TENTANG PENGENDALIAN PENCEMARAN UDARA.
Sang, A. I., Sutoyo, E., & Darmawan, I. (2021). Analisis Data Mining untuk Klasifikasi Data Kualitas Udara DKI Jakarta Menggunakan Algoritma Decision Tree dan Support Vector Machine. E-Proceeding of Engineering , 8(5), 8954–8963.
Swantika, I. M. A., Kanata, B., & Suksmadana, I. M. B. (2020). Perancangan Sistem Untuk Mengetahui Kualitas Biji Kopi Berdasarkan Warna Dengan K-Nearest Neighbor. Jurnal Bakti Nusa, 1(2), 25–36.
DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10956
Refbacks
- There are currently no refbacks.
INDEXED BY :
Address : :
Fakultas Teknik Universitas Wahid Hasyim
View My Stats
ISSN : 2656-2855 E-ISSN : 2685-5518