Penerapan Data Mining dengan Metode Clustering untuk menentukan Strategi Peningkatan Penjualan Berdasarkan Data Transaksi

Muhamad Sulaiman, Riandy Yudistira, Riri Narasati, Ruli Herdiana

Abstract


Improving marketing strategies in mini markets by applying the clustering method as the basis of the approach. By using the K-Means cluster algorithm on data on the number of transactions and total sales, this research aims to identify groups of customers who have similar purchasing patterns. This clustering is the basis for formulating a more targeted and efficient marketing strategy. The K-Means approach is used to group customers into segments that have similarities in transaction behavior. The results of this clustering are then used to develop more personalized marketing strategies, understand the unique needs of each customer group, and increase the effectiveness of marketing efforts. This research involves collecting data on the number of transactions and total sales from mini markets during a certain time period. The data is then analyzed using the K-Means algorithm to produce customer segments that have similar characteristics. The results of this analysis resulted in 4 clusters being formed, consisting of cluster 0, cluster 1, cluster 2, cluster 3 consisting of 7303 data that had gone through the preprocessing stage, divided into cluster 0 including low clusters and cluster 1 including high clusters and clusters 2 and 3 including Meanwhile, from these results, strategies can be concluded that can be implemented to improve minimarket performance by identifying these results.


Keywords


Data on number of transactions, application of the k-means cluster algorithm, customer grouping.

Full Text:

PDF

References


Adibya, S., Putra, P., Kasih, P., & Sahertian, J. (2019). Implementasi Pola Penjualan Barang di Minimarket Menggunakkan Metode Apriori. Seminar Nasional Inovasi Teknologi, 181–186.

Ahsina, N., Fatimah, F., & Rachmawati, F. (2022). Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi Infomasi Terapan, 8(3). https://doi.org/10.33197/jitter.vol8.iss3.2022.883

Amalina, T., Bima, D., Pramana, A., & Sari, B. N. (2022). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. Jurnal Ilmiah Wahana Pendidikan, 8(15), 574–583. https://doi.org/10.5281/zenodo.7052276

Dista, T. M., & Abdulloh, F. F. (2022). Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization. Jurnal Media Informatika Budidarma, 6(3), 1339. https://doi.org/10.30865/mib.v6i3.4172

Khaerullah, R. R., Suarna, N., & Nurdiawan, O. (2023). Analisa Pengelompokan Dataset Komputer Menggunakan Algoritma X-Means. Jurnal Informatika Dan Teknologi Informasi, 1(2), 125–132. https://doi.org/10.56854/jt.v1i2.135

Nugraha, A., Nurdiawan, O., & Dwilestari, G. (2022). Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 849–855. https://doi.org/10.36040/jati.v6i2.5755

Nurdiawan, O., Irma Purnamasari, A., & Ali, I. (2021). Analisa Penjualan Mobil Dengan Menggunakan Algoritma K-Means Di PT. Mulya Putra Kencana. Jurnal Data Science Dan Informatika, 1(2), 32–35.

Sulistio, M. R., Suarna, N., & Nurdiawan, O. (2023). Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang. Jurnal Teknologi Ilmu Komputer, 1(2), 37–42. https://doi.org/10.56854/jtik.v1i2.49

Wahyuni, A. S., & Utamajaya, J. N. (2022). Penerapan Data Mining Untuk Menentukan Strategi Penjualan Pada Toko Raja Komputer Menggunakan Metode Clustering. JURIKOM (Jurnal Riset Komputer), 9(2), 281. https://doi.org/10.30865/jurikom.v9i2.4003

Wijaya, R., & Somya, R. (2022). Analisis Dataset Transaksi Penjualan Minimarket Menggunakan Algoritma Generalized Sequential Pattern Berbasis Web. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 5(2), 8–15. https://doi.org/10.37792/jukanti.v5i2.516




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10329

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518