Penerapan Data Mining dengan Metode Clustering untuk menentukan Strategi Peningkatan Penjualan Berdasarkan Data Transaksi
Abstract
Improving marketing strategies in mini markets by applying the clustering method as the basis of the approach. By using the K-Means cluster algorithm on data on the number of transactions and total sales, this research aims to identify groups of customers who have similar purchasing patterns. This clustering is the basis for formulating a more targeted and efficient marketing strategy. The K-Means approach is used to group customers into segments that have similarities in transaction behavior. The results of this clustering are then used to develop more personalized marketing strategies, understand the unique needs of each customer group, and increase the effectiveness of marketing efforts. This research involves collecting data on the number of transactions and total sales from mini markets during a certain time period. The data is then analyzed using the K-Means algorithm to produce customer segments that have similar characteristics. The results of this analysis resulted in 4 clusters being formed, consisting of cluster 0, cluster 1, cluster 2, cluster 3 consisting of 7303 data that had gone through the preprocessing stage, divided into cluster 0 including low clusters and cluster 1 including high clusters and clusters 2 and 3 including Meanwhile, from these results, strategies can be concluded that can be implemented to improve minimarket performance by identifying these results.
Keywords
Full Text:
PDFReferences
Adibya, S., Putra, P., Kasih, P., & Sahertian, J. (2019). Implementasi Pola Penjualan Barang di Minimarket Menggunakkan Metode Apriori. Seminar Nasional Inovasi Teknologi, 181–186.
Ahsina, N., Fatimah, F., & Rachmawati, F. (2022). Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi Infomasi Terapan, 8(3). https://doi.org/10.33197/jitter.vol8.iss3.2022.883
Amalina, T., Bima, D., Pramana, A., & Sari, B. N. (2022). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. Jurnal Ilmiah Wahana Pendidikan, 8(15), 574–583. https://doi.org/10.5281/zenodo.7052276
Dista, T. M., & Abdulloh, F. F. (2022). Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization. Jurnal Media Informatika Budidarma, 6(3), 1339. https://doi.org/10.30865/mib.v6i3.4172
Khaerullah, R. R., Suarna, N., & Nurdiawan, O. (2023). Analisa Pengelompokan Dataset Komputer Menggunakan Algoritma X-Means. Jurnal Informatika Dan Teknologi Informasi, 1(2), 125–132. https://doi.org/10.56854/jt.v1i2.135
Nugraha, A., Nurdiawan, O., & Dwilestari, G. (2022). Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 849–855. https://doi.org/10.36040/jati.v6i2.5755
Nurdiawan, O., Irma Purnamasari, A., & Ali, I. (2021). Analisa Penjualan Mobil Dengan Menggunakan Algoritma K-Means Di PT. Mulya Putra Kencana. Jurnal Data Science Dan Informatika, 1(2), 32–35.
Sulistio, M. R., Suarna, N., & Nurdiawan, O. (2023). Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang. Jurnal Teknologi Ilmu Komputer, 1(2), 37–42. https://doi.org/10.56854/jtik.v1i2.49
Wahyuni, A. S., & Utamajaya, J. N. (2022). Penerapan Data Mining Untuk Menentukan Strategi Penjualan Pada Toko Raja Komputer Menggunakan Metode Clustering. JURIKOM (Jurnal Riset Komputer), 9(2), 281. https://doi.org/10.30865/jurikom.v9i2.4003
Wijaya, R., & Somya, R. (2022). Analisis Dataset Transaksi Penjualan Minimarket Menggunakan Algoritma Generalized Sequential Pattern Berbasis Web. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 5(2), 8–15. https://doi.org/10.37792/jukanti.v5i2.516
DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10329
Refbacks
- There are currently no refbacks.
INDEXED BY :
Address : :
Fakultas Teknik Universitas Wahid Hasyim


View My Stats
ISSN : 2656-2855 E-ISSN : 2685-5518