Main Article Content

Abstract

The health of children under five is very important in the development of a country. Toddler nutrition is a key aspect in ensuring the healthy growth and development of children. This study aims to analyze the clustering of nutritional status of toddlers in Mekar Wangi village using the K-Means algorithm. Clustering analysis is a data mining analysis method that is influenced by the clustering algorithm method. The nutritional status of toddlers at the posyandu in Mekar Wangi Village is grouped based on certain metrics, such as body weight and height, using the K-Means Clustering technique. Data contains a lot of attribute information. Once the data is collected and analyzed, pre-processing is performed to remove invalid and empty data. The results of the clustering analysis show that some groups of toddlers have normal nutritional status, while other groups have less or more nutritional problems. The optimal Davies Bouldin Index (DBI) performance evaluation value was found using the RapidMiner tool with K2 and the value of 0.164 which is close to 0 indicates that the evaluated cluster produced a good cluster. With a better understanding of the nutritional patterns of toddlers in Mekar Wangi Village, Posyandu officers can developing a more efficient program to improve the nutritional quality of children in Mekar Wangi Village. Posyandu officers can assist in decision making to develop more targeted recommendations and interventions to improve the nutritional status of toddlers in Mekar Wangi village.

Keywords

K-Means clustering baby nutrition posyandu

Article Details

References

  1. Adiputra, I. N. M. (2022). Clustering Penyakit Dbd Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means. INSERT : Information System and Emerging Technology Journal, 2(2), 99. https://doi.org/10.23887/insert.v2i2.41673
  2. Apriyani, P., Dikananda, A. R., & Ali, I. (2023). Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi. Hello World Jurnal Ilmu Komputer, 2(1), 20–33. https://doi.org/10.56211/helloworld.v2i1.230
  3. Gustrianda, R., & Mulyana, D. I. (2022). Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids. Jurnal Media Informatika Budidarma, 6(1), 27. https://doi.org/10.30865/mib.v6i1.3294
  4. Irfiani, E., & Rani, S. S. (2018). Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 6(4), 161. https://doi.org/10.26418/justin.v6i4.29024
  5. Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
  6. Zami, A. Z., Nurdiawan, O., & Dwilestari, G. (2022). Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 3(3), 305. https://doi.org/10.30865/json.v3i3.3892