Analisis Sentimen Opini Supporter Pengguna Youtube terhadap Sistem Pembelian Tiket Pertandingan Persib menggunakan Metode Naïve Bayes

Adam Arifian Alamyah, Rini Astuti, Fadhil Muhamad Basysyar

Abstract


Reporting about Persib cannot be separated from the role of the media from the era of the union until today. The first news about Persib in the media was at least in November 1904, when the Priangan Association (PVB) was recorded as the first association in Bandung. Using Descriptive Analysis, in the form of a word cloud, which is used in this research to identify and form word patterns that can be associated with other words that are considered important. Naïve Bayes Classifier Method. used in this research to identify and form word patterns that can be associated with other words to obtain information that is considered important. YouTube has become one of the largest platforms for sharing visual content on the internet. One of the topics that is being widely discussed is the ticket purchasing system for Persib Bandung matches. This has invited a lot of reactions, especially from the community, especially residents of West Java. This causes the controversy to become a polemic. Therefore, a method is needed to classify reviews automatically by conducting sentiment analysis. In this research, 2129 comment data in several contents discussed the Persib Bandung match ticket system. The aim of this research is to classify the analysis. review of the polemic of the match ticket system using the Naïve Bayes algorithm.


Keywords


Sentiment Analysis; YouTube; Naïve Bayes; Persib Bandung

Full Text:

PDF

References


Alita, D. and Shodiqin, R.A. (2023) ‘Sentimen Analisis Vaksin Covid-19 Menggunakan Naive Bayes Dan Support Vector Machine’, Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), pp. 1–12. Available at: https://doi.org/10.58602/jaiti.v1i1.20.

Ein, I., Ernawati, I. and Widiastiwi, Y. (2022) ‘Analisis Sentimen Terhadap Layanan Transjakarta Pada Media Sosial Instagram Menggunakan Naïve Bayes dan Seleksi Fitur Information Gain’, Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 442–451.

Hudha, M., Supriyati, E. and Listyorini, T. (2022) ‘Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier’, JIKO (Jurnal Informatika dan Komputer), 5(1), pp. 1–6. Available at: https://doi.org/10.33387/jiko.v5i1.3376.

Jonathan, M. and Nataliani, Y. (2022) ‘Analisis Sentimen Penilaian Masyarakat Indonesia terhadap GeNose pada Komentar Youtube Menggunakan Metode Naïve Bayes’, Jurnal Matematika dan Aplikasi, 11(01). Available at: https://ejournal.unsrat.ac.id/index.php/decartesian/article/view/38339.

Lisangan, E.A., Gormantara, A. and Carolus, R.Y. (2022) ‘Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter Terhadap Kondisi New Normal di Indonesia’, KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 2(1), pp. 23–32. Available at: https://doi.org/10.24002/konstelasi.v2i1.5609.

Salsabila, S.M., Murtopo, A.A. and Fadhilah, N. (2022) ‘Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier’, 11(September), pp. 30–35.

Subarkah, P. et al. (2023) ‘Sentiment Analysis on Reviews of Women ’ S Tops on Shopee’, 9(1), pp. 126–133. Available at: https://doi.org/10.33480/jitk.v9i1.4179.INTRODUCTION.

Yelvita, F.S. (2022) ‘No Titleהכי קשה לראות את מה שבאמת לנגד העינים’, הארץ, (8.5.2017), pp. 2003–2005.

Yoga Saputra, P., Hanifudin Subhi, D. and Zain Afif Winatama, Z. (2019) ‘Implementasi Sentimen Analisis Komentar Channel Video Pelayanan Pemerintah Di Youtube Menggunakan Algoritma Naïve Bayes’, Jurnal Informatika Polinema, 5(3), pp. 209–213. Available at: http://jip.polinema.ac.id/ojs3/index.php/jip/article/view/259.

Zhafira, D.F., Rahayudi, B. and Indriati, I. (2021) ‘Zhafira, Dhaifa Farah Rahayudi, Bayu Indriati, Indriati’, Jurnal Sistem Informasi, Teknologi Informasi, dan Edukasi Sistem Informasi, 2(1), pp. 55–63. Available at: https://doi.org/10.25126/justsi.v2i1.24.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10310

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518