Penerapan Algoritma Naive Bayes pada Analisis Sentimen Ulasan Aplikasi Whoosh – Kereta Cepat Di Google Play Store

Tuti Hartati, Rachmat Trikar Sohadi, Edi Tohidi, Edi Wahyudin

Abstract


Sentiment analysis of user reviews on mobile app distribution platforms is a complex and crucial issue, especially with the rapid growth of the number of users and the volume of reviews. This research focuses on the application of Naive Bayes Algorithm to analyze the sentiment of user reviews of WHOOSH app on Google Play Store. Naive Bayes algorithm was chosen due to its efficiency and easy implementation. Using a dataset of 500 cleaned and labeled reviews (positive or negative), the model was trained and achieved 81.25% accuracy. The high precision for the positive class (90%) demonstrates the model's ability to correctly identify positive reviews. Although the recall of the positive class is high (94%), the recall of the negative class still needs to be improved (64%). Overall, the Naive Bayes model is effective for classifying sentiment in WHOOSH user reviews, but needs to improve the accuracy and recall of negative classes.


Keywords


Naive Bayes Algorithm, Mobile Application, Sentiment Analysis, User Reviews

Full Text:

PDF

References


Azahri, M., Sulistiyowati, N., & Jajuli, M. (2023). Analisis Sentimen Pengguna Kereta Api Indonesia Melalui Sosial Media Twitter Dengan Algoritma Naïve Bayes Classifier. Jurnal Mahasiswa Teknik Informatika, 7(3), 1671–1675.

Hakim, A. N., Purnamasari, A. I., Nurdiawan, O., & Anwar, S. (2022). Penggolongan Hewan Berdasarkan Jenis Makanannya Berbasis Game 2D Menggunakan Metode Systems Development Life Cycle. 6(1), 91–100.

Ilmiah, J., & Pendidikan, W. (2023). Analisis Sentimen Terhadap Perubahan Rute Krl Commuter Jabodetabek Menggunakan Algoritme Support Vector Machine (Svm). 9(15), 155–163. https://doi.org/https://doi.org/10.5281/zenodo.8206986

Kunci, K. (2022). Analysis, Data Mining, Classification, Naïve Bayes, RapidMiner. 10(2).

Melawati, Nur Hakim, A., Irma Purnamasari, A., Nurdiawan, O., & Anwar, S. (2021). Information Management For Educators And Professionals Berbasis Game 2D Menggunakan Metode Systems Development Life Cycle. Information Management for Educators and Professionals, 6(1), 91–100. http://ejournal-binainsani.ac.id/index.php/IMBI/article/view/1681/1368

Nurdiawan, O., Irma Purnamasari, A., & Ali, I. (2021). Analisa Penjualan Mobil Dengan Menggunakan Algoritma K-Means Di PT. Mulya Putra Kencana. Jurnal Data Science Dan Informatika, 1(2), 32–35.

Walid, M., & Halimiyah, F. (2022). Klasifikasi Kemandirian Siswa SMA/MA Double Track Menggunakan Metode Naive Bayes. Jurnal ICT : Information Communication & Technology, 22, 190–197.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10307

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518