Analisis Sentimen Aplikasi Shopee di Goole Play Store Menggunakan Klasifikasi Algoritma Naïve Bayes

Moch Rifki Firdaus, Nining Rahaningsih, Raditya Danar Dana

Abstract


Through Information Technology (IT), the internet is now used to encourage business and market activities. This research aims to conduct sentiment analysis of Shopee application reviews on the Google Play Store platform by applying the Naïve Bayes algorithm classification method. As one of the leading e-commerce applications, Shopee relies heavily on user feedback to continuously improve the quality of its services. A deep understanding of customer sentiment revealed in app reviews can be the foundation for continuous improvement and improvement. The Naïve Bayes algorithm classification method was implemented to categorize sentiment in customer reviews on the Shopee application on the Google Play Store. The data used involves a large number of reviews covering various aspects of the application. The sentiment analysis process involves data prepprocessing, feature extraction, and Naïve Bayes mode training. The results of this research provide an overview of how users respond to the Shopee application, identifying positive, neutral and negative sentiment patterns that may influence the application's reputation and popularity. These findings can be a guide for application developers to focus on certain aspects that influence user satisfaction. In addition, the application of the Naïve Bayes algorithm classification method proves its reliability in identifying customer sentiment efficiently, contributing to a deep understanding regarding the use of this algorithm in the context of analysis sentiment on the application platform.


Keywords


Sentiment Analysis, Shopee Application, Google Play Store, Algorithm Classification, Naïve Bayes

Full Text:

PDF

References


Aryanti, D. (2022) ‘Analisis Sentimen Ibukota Negara Baru Menggunakan Metode Naïve Bayes Classifier’, Journal of Information System Research (JOSH), 3(4), pp. 524–531. Available at: https://doi.org/10.47065/josh.v3i4.1944.

Astari, N.M.A.J., Dewa Gede Hendra Divayana and Gede Indrawan (2020) ‘Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier’, Jurnal Sistem dan Informatika (JSI), 15(1), pp. 27–29. Available at: https://doi.org/10.30864/jsi.v15i1.332.

Duei Putri, D., Nama, G.F. and Sulistiono, W.E. (2022) ‘Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier’, Jurnal Informatika dan Teknik Elektro Terapan, 10(1), pp. 34–40. Available at: https://doi.org/10.23960/jitet.v10i1.2262.

Dwianto, E. and Sadikin, M. (2021) ‘Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine’, Format : Jurnal Ilmiah Teknik Informatika, 10(1), p. 94. Available at: https://doi.org/10.22441/format.2021.v10.i1.009.

Nurdiansyah, Y., Rahman, F. and Pandunata, P. (2021) ‘Analisis Sentimen Opini Publik Terhadap Undang-Undang Cipta Kerja pada Twitter Menggunakan Metode Naive Bayes Classifier’, Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO), 3(November), pp. 201–212. Available at: https://doi.org/10.54706/senastindo.v3.2021.158.

Putra, M.W.A. et al. (2020) ‘Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier’, IT Journal Research and Development, 5(1), pp. 72–86. Available at: https://doi.org/10.25299/itjrd.2020.vol5(1).5159.

Rosadi, A. et al. (2021) ‘Analisis Sentimen Berdasarkanan Opini Pengguna pada Media Twitter Terhadap BPJS Menggunakan Metode Lexicon Based dan Naïve Bayes Classi er Twitter Text Mining’, 20, pp. 39–52.

Safira, A., Masyarakat…, A.S. and Hasan, F.N. (2023) ‘ANALISIS SENTIMEN MASYARAKAT TERHADAP PAYLATER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER’, Jurnal Sistem Informasi, 5(1).

Salsabila, S.M., Alim Murtopo, A. and Fadhilah, N. (2022) ‘Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier’, Jurnal Minfo Polgan, 11(2), pp. 30–35. Available at: https://doi.org/10.33395/jmp.v11i2.11640.

Syarifuddinn, M. (2020) ‘Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn’, INTI Nusa Mandiri, 15(1), pp. 23–28. Available at: https://doi.org/10.33480/inti.v15i1.1347.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10302

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518