Peningkatan Efisiensi Pemantauan Kehadiran Siswa Melalui Analisis K-Means Clustering di Sekolah Menengah Pertama Negeri 3 Rancaekek, Kabupaten Bandung

Fitriani Agustina, Rudi Kurniawan, Tati Suprapti

Abstract


Student attendance at school is a key factor in determining the quality of education and the effectiveness of the learning process. Therefore, student attendance data can be one of the indicators for schools in managing and improving the quality of education. The problem is that the analysis process has not been carried out to group potential student activeness based on similar characteristics and the school still has difficulty in processing large data so that the quality of education is not optimal. This research involves student attendance data from SMP Negeri 3 Rancaekek for one academic year as the main dataset. The research method includes the stages of data collection, pre-processing, and analysis. The collected student attendance data was processed to remove outliers and create a dataset suitable for Clustering analysis. The K-Means Clustering method is used to group students into groups based on their attendance patterns. K-Means means an iterative clustering solution procedure that performs partitioning to classify or group a large number of objects. K-Means as a popular data mining method, is a solution procedure that is often used to identify natural groups in a case. This method focuses on grouping data that has similarities, so that the results can be analysed in more depth. The research results show that.


Keywords


Data Mining, Student Attendance Pattern, K-Means Clustering, SMPN 3 Rancaekek

Full Text:

PDF

References


Agusto, S.D. (2023) ‘… Data Nilai Siswa Kelas 8 Berbasis Nilai Pengetahuan Untuk Menentukan Siswa Berprestasi Menggunakan Metode K-Means Clustering (Studi Kasus: SMP Negeri 4 …’, 7(September), pp. 630–638. Available at: https://repository.uksw.edu/handle/123456789/30778%0Ahttps://repository.uksw.edu/bitstream/123456789/30778/7/T1_672018414_Isi.pdf.

Elda, Y. et al. (2021) ‘Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means’, Jurnal Informasi dan Teknologi, 3, pp. 103–108. Available at: https://doi.org/10.37034/jidt.v3i3.130.

Hartati, T., Nurdiawan, O. and Wiyandi, E. (2021) ‘Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari’, Jurnal Sains Teknologi Transportasi Maritim, 3(1), pp. 1–7. Available at: https://doi.org/10.51578/j.sitektransmar.v3i1.30.

Mawarni, Q.I. and Budi, E.S. (2022) ‘Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa’, Jurnal Sistem Komputer dan Informatika (JSON), 3(4), p. 522. Available at: https://doi.org/10.30865/json.v3i4.4242.

Nafsiah Muthmainnah, T. et al. (2023) ‘Jurnal Informatika dan Rekayasa Perangkat Lunak Penerapan Algoritme K-Means Dalam Mengelompokkan Data Pengangguran Terbuka Di Provinsi Jawa Barat’, 5(2), pp. 122–129.

Virgo, I., Defit, S. and Yuhandri, Y. (2020) ‘Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering’, Jurnal Sistim Informasi dan Teknologi, 2, pp. 23–28. Available at: https://doi.org/10.37034/jsisfotek.v2i1.17.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10300

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518