Klasifikasi Penentuan Tingkat Penyakit Demam Berdarah dengan menggunakan Algoritma Naïve Bayes (Studi Kasus Puskesmas Nagreg)

Saeful Anwar, Revita Lestari Faujiah, Tuti Hartati, Edi Tohidi

Abstract


The rapid development of science and technology, especially in the field of information technology, can give rise to new innovations for presenting and managing information to meet information needs. The role of technology in the health and medical fields has helped a lot in helping the human spirit and has shown its importance. Dengue Hemorrhagic Fever (DHF) is a disease that occurs in children and adults with the main symptoms of fever, muscle and joint pain, which usually gets worse after the first two days. DHF is a public health problem in Indonesia where the number of sufferers tends to increase and its spread causes bleeding. Dengue fever is characterized by sudden high fever lasting 2-7 days without a clear cause accompanied by manifestations such as petechiae, epistaxis sometimes accompanied by vomiting of blood, diarrhea, decreased consciousness, tendency to cause shock and death. The Naïve Bayes algorithm is a form of data classification using probability and statistical methods. The algorithm uses Bayes' theorem and assumes that all attributes are independent or not interdependent given the values of the class variables. Another definition says that Naïve Bayes is a classification using probability and statistical methods discovered by the British scientist Thomas Bayes, namely predicting future opportunities based on previous experience. Proceeding to the final stage, the final stage or step is to see the level of accuracy or how well the classification of the model we are using is.


Keywords


Classification, Naïve Bayes, Dengue Disease

Full Text:

PDF

References


Cholil, S. R., Dwijayanto, A. F., & Ardianita, T. (2020). Prediksi Penyakit Demam Berdarah Di Puskesmas Ngemplak Simongan Menggunakan Algoritma C4.5. Sistemasi, 9(3), 529. https://doi.org/10.32520/stmsi.v9i3.898

Matdoan, M. Y. (2022). Penerapan Metode K-Nearest Neighbor untuk Mengklasifikasi Penyebaran Kasus Demam Berdarah Dengue (DBD) di Kabupaten Maluku Tenggara. Square : Journal of Mathematics and Mathematics Education, 4(2), 75–82. https://doi.org/10.21580/square.2022.4.2.13056

Nurlelah, E., Abdilah, A., & Ghani, M. A. (2019). Implementasi Algoritma Naive Bayes Pada Sistem Pakar Untuk Diagnosis Penyakit Demam Berdarah Dengue Berbasis Website. Journal Speed-Sentra Penelitian Engineering Dan Edukasi, 11(3), 1–8.

Purnomo, R. K., Saufi, H. A., & Hs, R. (2023). Experimental Student Experiences. Experimental Student Experience, 1(1), 1–7.

Sastrawan, A. S., Gunadi, I. G. A., & Sukajaya, I. N. (2019). Perbandingan Kinerja Algoritma Dempster Shafer Dan Fuzzy-Naive Bayes Dalam Klasifikasi Penyakit Demam Berdarah Dan Tifus. Jurnal Ilmu Komputer Indonesia, 4(2), 24–32. https://ejournal-pasca.undiksha.ac.id/index.php/jik/article/view/3125

Sembiring, M. A. (2021). Penerapan Metode Algoritma K-Means Clustering Untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (Dbd). Journal of Science and Social Research, 4(3), 336. https://doi.org/10.54314/jssr.v4i3.712

Sulistio, M. R., Suarna, N., & Nurdiawan, O. (2023). Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang. Jurnal Teknologi Ilmu Komputer, 1(2), 37–42. https://doi.org/10.56854/jtik.v1i2.49

Utami, M. P., Fhira Nhita, M. ., & Annisa Aditsania, M. S. (2019). Prediksi Penyebaran Penyakit Demam Berdarah Dengue (DBD) di Kabupaten Bandung menggunakan Hybrid Random Forest (RF) dan Genetic Algorithm (GA). 6(2), 9963–9977.

Walid, M., & Halimiyah, F. (2022). Klasifikasi Kemandirian Siswa SMA/MA Double Track Menggunakan Metode Naive Bayes. Jurnal ICT : Information Communication & Technology, 22, 190–197.

Waru, D., & Wahyuning Astuti, R. (2021). Implementasi Metode Naïve Bayes Untuk Prediksi Daerah Terjangkit Demam Berdarah Dengue Di Provinsi Jambi. Jurnal Teknik Informatika Kaputama (JTIK), 5(2), 240–245.

Washilaturrizqi, O. N. (2023). Implementasi Algoritma C4 . 5 Untuk Menentukan Penerima. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 373–377.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10299

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518