Analisis Data Stok Alat Kesehatan menggunakan Metode Regresi Linier Berdasarkan Nilai RMSE

Trian Nurmansyah, Rudi Kurniawan, Yudhistira Arie Wijaya

Abstract


Inventory of healthcare equipment, whether in hospital or clinic settings, represents a significant investment requiring substantial cost allocation. However, estimating these equipment needs often relies solely on the overall available stock, as monthly or yearly requirements tend to fluctuate. Consequently, this approach leads to an inability to meet all necessary equipment needs, resulting frequently in surplus inventory. Therefore, anticipating this issue requires predicting healthcare equipment stock at Klinik Pembina Sehat. This study aims to forecast equipment stock using the linear regression algorithm method. The selection of this algorithm is due to its suitability in handling the linear relationship between dependent and independent variables. Research findings demonstrate the developed model's ability to predict healthcare equipment stock with a reasonably high level of accuracy, with a Root Mean Square Error (RMSE) value of 93.359. This value signifies a relatively low prediction error, indicating the model's precision in estimating stock requirements. Thus, this research holds the potential to enhance operational efficiency in managing healthcare equipment stock within the clinic and serves as a foundation for further studies to improve stock planning processes in similar healthcare institutions.


Keywords


Linear Regression Algorithm, Clinic, Prediction, RapidMiner, Healthcare Equipment Stock

Full Text:

PDF

References


Eska, J. (2016) ‘Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran’, JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 2, pp. 9–13.

Fachid, S. and Triayudi, A. (2022) ‘Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19’, 6, pp. 68–73. Available at: https://doi.org/10.30865/mib.v6i1.3492.

Harsiti, Muttaqin, Z. and Srihartini, E. (2022) ‘Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet’, JSiI (Jurnal Sistem Informasi), 9(1), pp. 12–16. Available at: https://doi.org/10.30656/jsii.v9i1.4426.

Muliawan, N.B. and Sulistijono, I.A. (2023) ‘Perbandingan K-Nearest Neighbors, Support Vector Dan Random Forest Pada Prediksi Medical Cost’, Indonesian Journal of Computer Science, 12(2), pp. 284–301. Available at: https://doi.org/https://doi.org/10.33022/ijcs.v12i1.3135.

Nasharudin, A.D.A. and Ependi, U. (2023) ‘Analisis peramalan penjualan produk pada pt . enseval putera megatrading TBK menggunakan metode regresi linear sederhana’, JUPITER jurnal penelitian ilmu dan teknik komputar, 15(1), pp. 317–326. Available at: https://doi.org/10.5281./5318/15.jupiter.2023.04.

Nofitri, R. and Irawati, N. (2019) ‘Analisis Data Hasil Keuntungan Menggunakan Software Rapidminer’, JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 5(2), pp. 199–204. Available at: https://doi.org/10.33330/jurteksi.v5i2.365.

Novianty, D., Palasara, N.D. and Qomaruddin, M. (2021) ‘Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia’, Jurnal Sistem dan Teknologi Informasi (Justin), 9(2), p. 81. Available at: https://doi.org/10.26418/justin.v9i2.43664.

Putra, B.J. et al. (2020) ‘Prediksi Kebutuhan Alat Kesehatan Rumah Sakit Menggunakan Metode Algoritma Regression Linier dan Naïve Bayes’, Jurnal Ilmiah Informatika Global, 11(2). Available at: https://doi.org/10.36982/jiig.v11i2.1221.

Rahman, B., Fauzi, F. and Amri, S. (2023) ‘Perbandingan Hasil Klasifikasi Data Iris menggunakan Algoritma K-Nearest Neighbor dan Random Forest’, Journal Of Data Insights, 1(1), pp. 19–26. Available at: https://doi.org/10.26714/jodi.v1i1.135.

Ramadhanty, D.A. et al. (2022) ‘Implementasi Data Mining Untuk Menentukan Persediaan Stok Obat Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM )’, Jurnal informatika dan Rekayasa Komputer (JAKAKOM), 1(2), pp. 155–160.

Saham, M. et al. (2023) ‘Analisis machine learning algoritma regresi linear untuk memprediksi saham di bank bri di bursa saham indonesia’, 6(8), pp. 81–87. Available at: https://doi.org/10.37600/tekinkom.v6i1.747.

Surya Negara, E. et al. (2023) ‘Sulaiman et al, Komparasi Algoritma K-Nearest Neoghbors dan Random Forest …….. 337 Komparasi Algoritma K-Nearest Neighbors dan Random Forest Pada Prediksi Harga Mobil Bekas’, Jurnal JUPITER, 15(1), pp. 337–346. Available at: www.cardekho.com.




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10275

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518