Analisis Data Sentimen Ulasan Aplikasi Dana di Google Play Store Menggunakan Algoritma Naïve Bayes
Abstract
In an era of rapid technological advancement, mobile applications, especially e-wallets such as Dana Apps, are becoming increasingly easy to use for digital payment transactions. This innovation drives research on how digital payment platforms build information systems and business strategies through digital platforms. To compete in a growing industry, companies must produce products and services that meet customer needs. Internet user opinions, especially about apps, are important in gathering information. This research focuses on analyzing the sentiment data of Dana App reviews on the Google Play Store using the Naïve Bayes classification algorithm which is well known for its accuracy and high data processing speed. The results show that the 80:20 ratio provides an accuracy rate of 50.21%, precision and recall of 0.00% each, This research has a significant impact on the information technology industry, providing guidance for practitioners and researchers in choosing sentiment data analysis methods. The implementation of the Naïve Bayes algorithm can improve the interaction between users and applications, support innovation, and contribute to the overall development of information technology.
Keywords
Full Text:
PDFReferences
Agustina, D.A., Subanti, S. dan Zukhronah, E. (2021) “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,” Indonesian Journal of Applied Statistics, 3(2), hal. 109. Tersedia pada: https://doi.org/10.13057/ijas.v3i2.44337.
Aulia, S. (2020) “Pola Perilaku Konsumen Digital Dalam Memanfaatkan Aplikasi Dompet Digital,” Jurnal Komunikasi, 12(2), hal. 311. Tersedia pada: https://doi.org/10.24912/jk.v12i2.9829.
Cahyaningtyas, C., Nataliani, Y. dan Widiasari, I.R. (2021) “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, 18(2), hal. 173–184. Tersedia pada: https://doi.org/10.24246/aiti.v18i2.173-184.
Fitriyana, V. dkk. (2023) “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” Jurnal Buana Informatika, 14(01), hal. 40–49. Tersedia pada: https://doi.org/10.24002/jbi.v14i01.6909.
Gosari, N.C. dan Rismayani (2023) “Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM,” 8(3), hal. 174–180. Tersedia pada: https://sulsel.bps.go.id/searchengine/result.html.
Muliawan, N.B. dan Sulistijono, I.A. (2023) “Indonesian Journal of Computer Science,” Indonesian Journal of Computer Science, 12(2), hal. 284–301. Tersedia pada: https://doi.org/https://doi.org/10.33022/ijcs.v12i1.3135.
Mutmainah, S., Hatta Fudholi, D. dan Hidayat, S. (2023) “Analisis Sentimen dan Pemodelan Topik Aplikasi Telemedicine Pada Google Play Menggunakan BiLSTM dan LDA,” 7, hal. 312–323. Tersedia pada: https://doi.org/10.30865/mib.v7i1.5486.
Nikmatun, I.A. dan Waspada, I. (2019) “Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” Jurnal SIMETRIS, 10(2), hal. 421–432.
Pransiska, L. dkk. (2023) “Dampak Ekonomi Digital terhadap Penggunaan Aplikasi DANA pada Gen Z di Kota Pekanbaru,” 7, hal. 26604–26609.
Putri, T.A.Q., Triayudi, A. dan Aldisa, R.T. (2023) “Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Kepuasan Pelanggan Starbucks,” Journal of Information System Research (JOSH), 4(2), hal. 641–649. Tersedia pada: https://doi.org/10.47065/josh.v4i2.2949.
Qisthiano, M.R. dkk. (2021) “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes,” Jurnal Media Informatika Budidarma, 5(3), hal. 987. Tersedia pada: https://doi.org/10.30865/mib.v5i3.3030.
Ramadhan, B.Z., Adam, R.I. dan Maulana, I. (2022) “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes,” Journal of Applied Informatics and Computing, 6(2), hal. 220–225. Tersedia pada: https://doi.org/10.30871/jaic.v6i2.4725.
Roiqoh, S., Zaman, B. dan Kartono, K. (2023) “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes,” Jurnal Media Informatika Budidarma, 7(3), hal. 1582–1592. Tersedia pada: https://doi.org/10.30865/mib.v7i3.6194.
Sari, F.V. dan Wibowo, A. (2019) “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” Jurnal SIMETRIS, 10(2), hal. 681–686.
Setyaningsih, R.R.A. dan Hindriyanto Dwi Purnomo (2022) “Analysis of the Effects of Fertilizer on the Quality of the Mustard Plant (Brassica Chenensis L) Using Regression Logistics Method,” Jurnal Teknik Informatika (Jutif), 3(6), hal. 1565–1572. Tersedia pada: https://doi.org/10.20884/1.jutif.2022.3.6.394.
Silalahi, B.S. dan Kaunang, F.J. (2022) “Analisis Service Quality pada Aplikasi DANA berdasarkan Sudut Pandang Pelanggan di Daerah Bandung Menggunakan Metode Servqual dan Model Kano,” TeIKa, 12(02), hal. 121–133. Tersedia pada: https://doi.org/10.36342/teika.v12i02.2957.
Vamilina, V. dan Novita, R. (2023) “Analisis Sentimen E-Wallet Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” Building of Informatics, Technology and Science (BITS), 5(1), hal. 40–48. Tersedia pada: https://doi.org/10.47065/bits.v5i1.3526.
Yuliarina, A.N. dan Hendry, H. (2022) “Comparison of Prediction Analysis of Gofood Service Users Using the Knn & Naive Bayes Algorithm With Rapidminer Software,” Jurnal Teknik Informatika (Jutif), 3(4), hal. 847–856. Tersedia pada: https://doi.org/10.20884/1.jutif.2022.3.4.294.
DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10272
Refbacks
- There are currently no refbacks.
INDEXED BY :
Address : :
Fakultas Teknik Universitas Wahid Hasyim
View My Stats
ISSN : 2656-2855 E-ISSN : 2685-5518