Implementasi Algoritma Regresi Linear Berganda untuk Memprediksi Biaya Asuransi Kesehatan
Abstract
Technological developments such as telemedicine and big data analysis have had a significant impact on the health insurance industry. It is very difficult to make wise decisions if customers do not understand the cost of insurance. Age, gender, medical history, region, smoking, and body mass index (BMI) are a number of variables used to determine the variables that contribute to health insurance costs. Multiple linear regression was used to identify variables that contribute to predicting relative health insurance costs. Multiple linear regression analysis, also known as multiple regression analysis, is a regression model that involves more than one independent variable. This is determined by using statistical software to determine which independent variables have a significant influence on the dependent variable. The value of using multiple linear regression is primarily related to the need for prediction of insurance costs. In the RapidMiner tool, the linear regression operator is used to perform linear regression calculations. From a total of 1338 datasets, the data is divided into two parts. 90% is used as training data (with a total of 1204 data) and 10% is used as test data (with a total of 134 data). The results of the analysis show that independent factors such as smoking status, age, and body mass index have a significant correlation with insurance premium costs. The value 5891.019 was generated from model evaluation using Root Mean Squared Error (RMSE). The strong correlation between smoking status and premium costs, along with positive correlations with age and body mass index (BMI), suggests that premium costs increase with increasing age and weight category.
Keywords
Full Text:
PDFReferences
Akmal, K., Faqih, A. and Dikananda, F. (2023) ‘Perbandingan Metode Algoritma Naïve Bayes Dan K-Nearest Neighbors Untuk Klasifikasi Penyakit Stroke’, JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), pp. 470–477. Available at: https://doi.org/10.36040/jati.v7i1.6367.
Cenora, E. and Hermawan, D. (2022) ‘Asuransi dan Pandemi Covid-19: Peran Persepsi Konsumen dalam Keputusan Pembelian’, Ekonomi, Keuangan, Investasi dan Syariah (EKUITAS), 3(3), pp. 386–394. Available at: https://doi.org/10.47065/ekuitas.v3i3.1033.
Hidayatullah, R.S. et al. (2021) ‘Klasifikasi Loyalitas Calon Pengguna Jasa Asuransi Kesehatan Menggunakan Algoritma Decision Tree Loyalty Classification of Prospective Health Insurance Service Users Using the Decision Tree Algorithm’, (December). Available at: https://doi.org/10.13140/RG.2.2.35727.71842.
Jannah, M. et al. (2022) ‘Analisis Biaya Premi Asuransi Kesehatan Untuk Kasus Rawat Jalan Berdasarkan Tingkatan Usia’, MAp (Mathematics and Applications) Journal, 4(1), pp. 40–49. Available at: https://doi.org/10.15548/map.v4i1.4195.
Maulita, M. (2023) ‘Pendekatan Data Mining Untuk Analisa Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara)’, 6, pp. 99–106.
Pratama, R. et al. (2023) ‘Prediksi Customer Retention Perusahaan Asuransi Menggunakan Machine Learning’, Jurnal Sisfokom (Sistem Informasi dan Komputer), 12(1), pp. 96–104. Available at: https://doi.org/10.32736/sisfokom.v12i1.1507.
Puteri, K. and Silvanie, A. (2020) ‘Machine Learning untuk Model Prediksi Harga Sembako’, Jurnal Nasional Informatika, 1(2), pp. 82–94.
Putri, M. and Octova, A. (2022) ‘Analisis Regresi Linear Berganda Terhadap Losstime Untuk Mencapai Target Produksi Limestone Crusher Vi Pt Semen Padang’, Jurnal Pertambangan, 5(4), pp. 193–202. Available at: https://doi.org/10.36706/jp.v5i4.972.
Sholeh, M., Suraya, S. and Andayati, D. (2022) ‘Machine Linear untuk Analisis Regresi Linier Biaya Asuransi Kesehatan dengan Menggunakan Python Jupyter Notebook’, Jurnal Edukasi dan Penelitian Informatika (JEPIN), 8(1), p. 20. Available at: https://doi.org/10.26418/jp.v8i1.48822.
Yumansya, Q., Zy, A.T. and Fatchan, M. (2023) ‘Prediksi Jumlah Kasus Klaim Indemnity Dengan Menggunakan Algoritma Regresi Linear Pada Asuransi Mandiri Inhealth’, 4(2), pp. 299–305.
DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10262
Refbacks
- There are currently no refbacks.
INDEXED BY :
Address : :
Fakultas Teknik Universitas Wahid Hasyim
View My Stats
ISSN : 2656-2855 E-ISSN : 2685-5518