Analisis Data Sentimen Pemain Game Role-Playing Game (RPG) Honkai Star Rail dengan Algoritma Naive Bayes

Yudis Firmansyah, Rudi Kurniawan, Yudhistira Arie Wijaya

Abstract


In the rapidly evolving digital age, the gaming industry has experienced significant growth. One of the games that is currently popular is Honkai Star Rail. This research uses Honkai Star Rail game player reviews as the object of sentiment data research. However, the problem found in sentiment data analysis is the existence of reviews that provide positive or negative ratings as a response from players. There are situations where these labels do not fully reflect the true essence of whether the response is positive or negative, so it is necessary to analyze sentiment data. The purpose of this sentiment data research is to assess the performance of the naive bayes model in classifying sentiment by finding the best accuracy value and AUC value from 3 scenarios of sharing test data and data. The method in this study uses the Naive Bayes algorithm, this algorithm was chosen because it is suitable for classification problems. The test results with 3 dataset sharing scenarios (60:40, 70:30, and 80:20) show that the accuracy value reaches the highest value in scenario 2 (70:30) which is 86%. The precision value also reaches the highest value in scenario 2, which is 84%, the recall value reaches the highest value in scenario 2, which reaches 89%. And the highest AUC (Area Under the Curve) value is obtained from scenario 2 of 0.92 with the excellent classification category.


Keywords


Sentiment Data Analysis, AUC, Honkai Star Rail, Game, Naive Bayes

Full Text:

PDF

References


Alifa Nanda Prakoso, Q., Muliawati, A., Nurlaili Isnainiyah, I., Ilmu Komputer, F., Pembangunan Nasional Veteran Jakarta, U., Fatmawati No, J. R., Labu, P., & Selatan DKI Jakarta, J. (2022). Analisis Sentimen terhadap Produk Skin Game di Forum Review Female Daily Menggunakan Metode Multinomial Naïve Bayes dan TF-IDF. JURNAL INFORMATIK Edisi Ke, 18, 2022.

Atmani, A. K. P., Widhiyanti, K., & Prasetyawan, Y. (2020). User Centered Design Dalam Evaluasi Game “Reinhart and the Great Gate.” Teknika, 9(1), 25–30. https://doi.org/10.34148/teknika.v9i1.240

Azahri, M., Sulistiyowati, N., & Jajuli, M. (2023). ANALISIS SENTIMEN PENGGUNA KERETA API INDONESIA MELALUI SOSIAL MEDIA TWITTER DENGAN ALGORITMA NAÏVE BAYES CLASSIFIER. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 3).

Haryalesmana Wahid, D. (2016). Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. IJCCS, 10(2), 207–218.

Hasibuan, E., & Heriyanto, E. A. (2022). ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER. JTS, 1(3).

Karyadiputra, E., Kom, S., & Kom, M. (2016). ANALISIS ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI STATUS KESEJAHTERAAN RUMAH TANGGA KELUARGA BINAAN SOSIAL. In Technologia (Vol. 7, Issue 4). Oktober-Desember.

Khoirul, M., Hayati, U., & Nurdiawan, O. (2023). ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 1).

Liu, B., Hu, M., & Cheng, J. (n.d.). Opinion Observer: Analyzing and Comparing Opinions on the Web.

Maulana Rihan, Voutama, A., & Ridwan, T. (2023). ANALISIS SENTIMEN ULASAN APLIKASI MYPERTAMINA PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NBC. Jurnal Teknologi Terpadu, 9.

Mh, R., Sokibi, P., & Martha, D. (2018). “THE ADVENTURE OF SACHI” MENGGUNAKAN ENGINE RPG MAKER MV (Vol. 8, Issue 2).

Mustofa, R. L., & Prasetiyo, B. (2021). Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on #newnormal hashtag in twitter. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042155

Rinaldi Pradana, R., Surahman, A., & Rinaldi, R. (2020). PERANCANGAN APLIKASI GAME FIGHTING 2 DIMENSI DENGAN TEMA KARAKTER NUSANTARA BERBASIS ANDROID MENGGUNAKAN CONSTRUCT 2. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1(2), 234–244. http://jim.teknokrat.ac.id/index.php/informatika

Saputra, A., & Noor Hasan, F. (2023). ANALISIS SENTIMEN TERHADAP APLIKASI COFFEE MEETS BAGEL DENGAN ALGORITMA NAÏVE BAYES CLASSIFIER. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(2), 465–474. https://doi.org/10.54443/sibatik.v2i2.579




DOI: http://dx.doi.org/10.36499/jinrpl.v6i1.10243

Refbacks

  • There are currently no refbacks.


INDEXED BY :

Google Scholar GarudaCrossrefBASE Dimensions DOAJOne Search Scilit Sinta

 

 

 


Address : :

Fakultas Teknik Universitas Wahid Hasyim

JL. Menoreh Tengah X / 22, Sampangan, Gajahmungkur, Kota Semarang, Jawa Tengah 50232, Indonesia
Handphone: 0815-6529-309
Email: jinformatika@unwahas.ac.id
 
 
RJI JournalStories Main logo
View My Stats
ISSN : 2656-2855   E-ISSN : 2685-5518