Main Article Content
Abstract
Red spinach is a plant that provides various essential vitamins and minerals beneficial to human health. Creating red spinach powder as a convenient product can enhance its shelf life and ease of use while preserving its nutritional value and health benefits. The production of red spinach powder can be achieved through the foam mat drying technique. This research aims to evaluate the impact of different temperatures and maltodextrin concentrations on the production of spinach powder utilizing the foam mat drying method. The process involves adding egg white at concentrations of 15, 20, 25, and 30%, with maltodextrin variations of 15, 20, 25, and 30%, and drying temperatures set at 60, 65, and 70ºC to spinach puree made from grinding 20 grams of red spinach leaves for each sample. The study's findings indicate that the foam mat drying method is an effective approach for drying red spinach puree, particularly when compared to traditional drying techniques. The rate of drying using the foam-mat method is higher than that of the conventional drying process. Moreover, the drying temperature significantly influences the reduction of water content in the product; higher temperatures lead to a more rapid decrease in moisture. During the drying process at temperatures ranging from 60 to 70ºC, the combination of 15% maltodextrin and 30% egg white yields red spinach powder with a lower moisture content compared to other sample combinations. The optimal drying process results in red spinach powder containing 0.08% water, achieved through the foam mat drying method at 65ºC.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Afifah, N., Rahayuningtyas, A., Kuala, S. I., Pengembangan, P., Tepat, T., Tubun, J. K. S., Subang, N., & Barat, J. (2017). Pemodelan Kinetika Pengeringan Beberapa Komoditas Pertanian Menggunakan Pengering Inframerah Drying Kinetics Modeling of Agricultural Commodities Using Infrared Dryer. 37(2), 220–228.
- Caparanga, A. R., Reyes, R. A. L., Rivas, R. L., De Vera, F. C., Retnasamy, V., & Aris, H. (2017). Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae). EPJ Web of Conferences, 162, 4–8. https://doi.org/10.1051/epjconf/201716201084
- Chronakis, I. S. (1998). On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: A review. Critical Reviews in Food Science and Nutrition, 38(7), 599–637. https://doi.org/10.1080/10408699891274327
- Cui, T., Gine, G. R., Lei, Y., Shi, Z., Jiang, B., Yan, Y., & Zhang, H. (2024). Ready-to-Cook Foods: Technological Developments and Future Trends—A Systematic Review. Foods, 13(21), 1–27. https://doi.org/10.3390/foods13213454
- Diógenes, A. de M. G., Figueirêdo, R. M. F. de, Queiroz, A. J. de M., Ferreira, J. P. de L., Silva, W. P. da, Gomes, J. P., Santos, F. S. dos, Castro, D. S. de, Oliveira, M. N. de, Santos, D. da C., Andrade, R. O. de, & Lima, A. R. C. de. (2022). Mathematical models to describe the foam mat drying process. Foods, 11, 1–18.
- Hartati, I., & Kusumaningrum, M. (2019). Kinetika Pengeringan Busa Ampas Seduhan Teh Metana : Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna. 15(1), 25–31.
- Hossain, M. A., Ahmed, T., Ferdaus, J., & Zzaman, W. (2024). Optimization of the foam-mat drying process to develop high-quality tomato powder: A response surface methodology approach. Heliyon, 10(21), e39811. https://doi.org/10.1016/j.heliyon.2024.e39811
- Isherdini, Nurlaila, D. S., & Suparti. (2023). Growth Red Spinach (Amaranthus amoena ) by Hydroponics Using Charcoal Media Husk. International Conference on Biology Education, Natural Science, and Technology, 1(1), 464–472.
- Khatri, B., Hamid, Shams, R., Dash, K. K., Shaikh, A. M., & Béla, K. (2024). Sustainable drying techniques for liquid foods and foam mat drying. Discover Food, 4(1). https://doi.org/10.1007/s44187-024-00223-3
- Kosasih, E. A., Zikri, A., & Dzaky, M. I. (2020). Effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava. Case Studies in Thermal Engineering, 19(February), 100633. https://doi.org/10.1016/j.csite.2020.100633
- Lestario, L. N., Melanie, M., & Rahardjo, M. (2023). Effect of Maltodextrin Concentration on Anthocyanin Content and Antioxidant Activity of Rukem Fruits Extract Powder. Jurnal Teknologi Dan Industri Pangan, 34(2), 142–151. https://doi.org/10.6066/jtip.2023.34.2.142
- Longdong, I. A., Matahari, V. M., & Tooy, D. (2024). Characteristics of drying cayenne pepper ( Capsicum frutescens L.) using a portable type of dryer. IOP Conference Series: Earth and Environmental Science, 1297(1). https://doi.org/10.1088/1755-1315/1297/1/012041
- M, J. I., Abbas, A., Rafique, H., M, F. N., & Rasool, A. (2018). A review paper on foam-mat drying of fruits and vegetables to develop powders. MOJ Food Processing & Technology, 6(6). https://doi.org/10.15406/mojfpt.2018.06.00207
- Mathew, U., & Sharma, P. (2023). Recent developments in ready-to-eat and ready-to- cook foods : An overview. 5(1), 147–152.
- Mounir, S. (2018). Foam Mat Drying FMD. Drying Technologies for Foods: Fundamentals and Applications: Part III, October, 169–191. https://www.researchgate.net/publication/320566592
- Mullai, N. K., Babu, M., Ashok, K., & Padmapriya, V. (2023). Phytochemical Profiling and Antioxidant Activity of Red Spinach (Amaranthus dubius). International Journal of Zoological Investigations, 9(1), 178–183. https://doi.org/10.33745/ijzi.2023.v09i01.020
- Munin, A., & Edwards-lévy, F. (2011). Encapsulation of Natural Polyphenolic Compounds; a Review. https://doi.org/10.3390/pharmaceutics3040793
- Perdana, A. W., Maulida, S., & Indriani, R. (2024). Effect of addition of red spinach leaf extract (Amaranthus tricolor L.) in feed against the level of color brightness of sword platy fish (Xiphophorus helleri). BIO Web of Conferences, 87. https://doi.org/10.1051/bioconf/20248703012
- Prasoona, J., Kumari, B. A., Sarkar, S., Kiran, V. K., & Swamy, R. (2020). Development of instant chutney powder with incorporation of cabbage and green leafy vegetable. Journal of Pharmacognosy and Phytochemistry, 9(4), 3275–3278. https://doi.org/10.22271/phyto.2020.v9.i4ag.12123
- Pratiwi, A., Roka Aji, O., & Sumbudi, M. (2022). Growth Response and Biochemistry of Red Spinach (Amaranthus tricolor L.) with the Application of Liquid Organic Fertilizer Lemna sp. Journal of Biotechnology and Natural Science, 2(2), 61–69. https://doi.org/10.12928/jbns.v2i2.6877
- Putri, H. O., Arrazy, S., & Wahyudi. (2022). SUBSTITUTION OF RED AMARANTH FLOUR (AMARANTHUS TRICOLOR L.) IN MANUFACTURE WET NOODLES AS FOODS HIGH IN IRON (FE). Indonesian Journal of Global Health Research, 4(3), 481–494.
- Rahman, A. N. F., Latief, R., & Kartono, H. (2023). Extraction and analysis of lutein and antioxidant activities from red spinach’s root, stem, and leaf. IOP Conference Series: Earth and Environmental Science, 1200(1). https://doi.org/10.1088/1755-1315/1200/1/012021
- Trimedona, N., Rahzarni, Muchrida, Y., Zebua, E. A., & Utama, R. S. (2022). Physicochemical properties of instant beverage powders from red dragon fruit peel extracts with maltodextrin and cocoa powder as fillers. IOP Conference Series: Earth and Environmental Science, 1097(1). https://doi.org/10.1088/1755-1315/1097/1/012037
- Triyono, A., Andriansyah, R. C. E., Luthfiyanti, R., & Rahman, T. (2017). Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator. Iopscience.Iop.Org, 8(February 2018), 68–74. https://doi.org/10.1088/1755-1315
- Ueda, J. M., Morales, P., Fernández-Ruiz, V., Ferreira, A., Barros, L., Carocho, M., & Heleno, S. A. (2023). Powdered Foods: Structure, Processing, and Challenges: A Review. Applied Sciences (Switzerland), 13(22). https://doi.org/10.3390/app132212496
- Yusufe, M., Mohammed, A., & Satheesh, N. (2017). Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) Cochoro variety. Acta Universitatis Cibiniensis - Series E: Food Technology, 21(1), 41–50. https://doi.org/10.1515/aucft-2017-0005
- Zhang, X., Yang, L., Huang, C., Huang, L., & Qian, Y. (2021). Effect of drying temperature on drying characteristics and quality of honeysuckle. IOP Conference Series: Earth and Environmental Science, 692(3). https://doi.org/10.1088/1755-1315/692/3/032106
References
Afifah, N., Rahayuningtyas, A., Kuala, S. I., Pengembangan, P., Tepat, T., Tubun, J. K. S., Subang, N., & Barat, J. (2017). Pemodelan Kinetika Pengeringan Beberapa Komoditas Pertanian Menggunakan Pengering Inframerah Drying Kinetics Modeling of Agricultural Commodities Using Infrared Dryer. 37(2), 220–228.
Caparanga, A. R., Reyes, R. A. L., Rivas, R. L., De Vera, F. C., Retnasamy, V., & Aris, H. (2017). Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae). EPJ Web of Conferences, 162, 4–8. https://doi.org/10.1051/epjconf/201716201084
Chronakis, I. S. (1998). On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: A review. Critical Reviews in Food Science and Nutrition, 38(7), 599–637. https://doi.org/10.1080/10408699891274327
Cui, T., Gine, G. R., Lei, Y., Shi, Z., Jiang, B., Yan, Y., & Zhang, H. (2024). Ready-to-Cook Foods: Technological Developments and Future Trends—A Systematic Review. Foods, 13(21), 1–27. https://doi.org/10.3390/foods13213454
Diógenes, A. de M. G., Figueirêdo, R. M. F. de, Queiroz, A. J. de M., Ferreira, J. P. de L., Silva, W. P. da, Gomes, J. P., Santos, F. S. dos, Castro, D. S. de, Oliveira, M. N. de, Santos, D. da C., Andrade, R. O. de, & Lima, A. R. C. de. (2022). Mathematical models to describe the foam mat drying process. Foods, 11, 1–18.
Hartati, I., & Kusumaningrum, M. (2019). Kinetika Pengeringan Busa Ampas Seduhan Teh Metana : Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna. 15(1), 25–31.
Hossain, M. A., Ahmed, T., Ferdaus, J., & Zzaman, W. (2024). Optimization of the foam-mat drying process to develop high-quality tomato powder: A response surface methodology approach. Heliyon, 10(21), e39811. https://doi.org/10.1016/j.heliyon.2024.e39811
Isherdini, Nurlaila, D. S., & Suparti. (2023). Growth Red Spinach (Amaranthus amoena ) by Hydroponics Using Charcoal Media Husk. International Conference on Biology Education, Natural Science, and Technology, 1(1), 464–472.
Khatri, B., Hamid, Shams, R., Dash, K. K., Shaikh, A. M., & Béla, K. (2024). Sustainable drying techniques for liquid foods and foam mat drying. Discover Food, 4(1). https://doi.org/10.1007/s44187-024-00223-3
Kosasih, E. A., Zikri, A., & Dzaky, M. I. (2020). Effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava. Case Studies in Thermal Engineering, 19(February), 100633. https://doi.org/10.1016/j.csite.2020.100633
Lestario, L. N., Melanie, M., & Rahardjo, M. (2023). Effect of Maltodextrin Concentration on Anthocyanin Content and Antioxidant Activity of Rukem Fruits Extract Powder. Jurnal Teknologi Dan Industri Pangan, 34(2), 142–151. https://doi.org/10.6066/jtip.2023.34.2.142
Longdong, I. A., Matahari, V. M., & Tooy, D. (2024). Characteristics of drying cayenne pepper ( Capsicum frutescens L.) using a portable type of dryer. IOP Conference Series: Earth and Environmental Science, 1297(1). https://doi.org/10.1088/1755-1315/1297/1/012041
M, J. I., Abbas, A., Rafique, H., M, F. N., & Rasool, A. (2018). A review paper on foam-mat drying of fruits and vegetables to develop powders. MOJ Food Processing & Technology, 6(6). https://doi.org/10.15406/mojfpt.2018.06.00207
Mathew, U., & Sharma, P. (2023). Recent developments in ready-to-eat and ready-to- cook foods : An overview. 5(1), 147–152.
Mounir, S. (2018). Foam Mat Drying FMD. Drying Technologies for Foods: Fundamentals and Applications: Part III, October, 169–191. https://www.researchgate.net/publication/320566592
Mullai, N. K., Babu, M., Ashok, K., & Padmapriya, V. (2023). Phytochemical Profiling and Antioxidant Activity of Red Spinach (Amaranthus dubius). International Journal of Zoological Investigations, 9(1), 178–183. https://doi.org/10.33745/ijzi.2023.v09i01.020
Munin, A., & Edwards-lévy, F. (2011). Encapsulation of Natural Polyphenolic Compounds; a Review. https://doi.org/10.3390/pharmaceutics3040793
Perdana, A. W., Maulida, S., & Indriani, R. (2024). Effect of addition of red spinach leaf extract (Amaranthus tricolor L.) in feed against the level of color brightness of sword platy fish (Xiphophorus helleri). BIO Web of Conferences, 87. https://doi.org/10.1051/bioconf/20248703012
Prasoona, J., Kumari, B. A., Sarkar, S., Kiran, V. K., & Swamy, R. (2020). Development of instant chutney powder with incorporation of cabbage and green leafy vegetable. Journal of Pharmacognosy and Phytochemistry, 9(4), 3275–3278. https://doi.org/10.22271/phyto.2020.v9.i4ag.12123
Pratiwi, A., Roka Aji, O., & Sumbudi, M. (2022). Growth Response and Biochemistry of Red Spinach (Amaranthus tricolor L.) with the Application of Liquid Organic Fertilizer Lemna sp. Journal of Biotechnology and Natural Science, 2(2), 61–69. https://doi.org/10.12928/jbns.v2i2.6877
Putri, H. O., Arrazy, S., & Wahyudi. (2022). SUBSTITUTION OF RED AMARANTH FLOUR (AMARANTHUS TRICOLOR L.) IN MANUFACTURE WET NOODLES AS FOODS HIGH IN IRON (FE). Indonesian Journal of Global Health Research, 4(3), 481–494.
Rahman, A. N. F., Latief, R., & Kartono, H. (2023). Extraction and analysis of lutein and antioxidant activities from red spinach’s root, stem, and leaf. IOP Conference Series: Earth and Environmental Science, 1200(1). https://doi.org/10.1088/1755-1315/1200/1/012021
Trimedona, N., Rahzarni, Muchrida, Y., Zebua, E. A., & Utama, R. S. (2022). Physicochemical properties of instant beverage powders from red dragon fruit peel extracts with maltodextrin and cocoa powder as fillers. IOP Conference Series: Earth and Environmental Science, 1097(1). https://doi.org/10.1088/1755-1315/1097/1/012037
Triyono, A., Andriansyah, R. C. E., Luthfiyanti, R., & Rahman, T. (2017). Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator. Iopscience.Iop.Org, 8(February 2018), 68–74. https://doi.org/10.1088/1755-1315
Ueda, J. M., Morales, P., Fernández-Ruiz, V., Ferreira, A., Barros, L., Carocho, M., & Heleno, S. A. (2023). Powdered Foods: Structure, Processing, and Challenges: A Review. Applied Sciences (Switzerland), 13(22). https://doi.org/10.3390/app132212496
Yusufe, M., Mohammed, A., & Satheesh, N. (2017). Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) Cochoro variety. Acta Universitatis Cibiniensis - Series E: Food Technology, 21(1), 41–50. https://doi.org/10.1515/aucft-2017-0005
Zhang, X., Yang, L., Huang, C., Huang, L., & Qian, Y. (2021). Effect of drying temperature on drying characteristics and quality of honeysuckle. IOP Conference Series: Earth and Environmental Science, 692(3). https://doi.org/10.1088/1755-1315/692/3/032106