Main Article Content

Abstract

Microcrystalline cellulose is a modification of cellulose that functions as an additive widely used in the food and pharmaceutical industries. The raw material for microcrystalline cellulose is a material that contains high cellulose content, one of which comes from sugarcane bagasse. This study aims to examine the effect of the FeCl3 concentration variable on the hydrolysis process of sugarcane bagasse to produce microcrystalline cellulose. The research method is to isolate microcrystalline cellulose by hydrolysing α-cellulose from sugarcane bagasse using H2SO4 and FeCl3 solutions with four different concentrations, namely 1%, 2%, 3% and 4%. The analysis parameters consist of lignin content, cellulose and characteristics of microcrystalline cellulose. The results of the analysis show that sugarcane bagasse contains cellulose content of 38%, lignin content of 20.6. The delignification, bleaching and hydrolysis processes using microwave heating for 30 minutes and the addition of FeCl3 produce lignin content of 5.1% and microcrystalline cellulose content of 55%.

Keywords

Sugarcane Bagasse Hydrolysis Microcrystalline Cellulose FeCl3

Article Details

References

  1. Batubara, R. (2006). Teknologi Bleaching Ramah Lingkungan. Universitas Sumatra Utara : Medan.
  2. British Pharmacopoeia. 2009. Pharmaceutical Exipients Ed ke-6. London (UK): Pharmaceutical Press.
  3. Berglund, L.A., Benight A.S., Bismarck A., and Peijs T. 2010. Review: Current International Research Into Cellulose Nanofibres and Nanocomposites. SpringerLink, Journal of Material Science. 45. 1-33.B. G. Ranby, Discussion Faraday Soc.,11 .158 (1951).
  4. Hartati I., dkk. (2019). Proses Delignifikasi Hidrotropi Rami (Boeheria nivea Gaud). Inovasi Teknik Kimia Vol 4
  5. Hallac, B. B. & raguskas, A. J. (2011). Analyzing Cellulosic Degree Of Polymerization And Its Relevancy To Cellulosic Ethanol. Biofuels bioproduct and Biorefining, 5(2), 215-225
  6. Hu G, Heitmann JA, Rojas OJ. 2008. Feedstock Pretreatment Strategies for Producing Ethanol from Wood, Bark, and Forest Residues. Bioresouces 3:270-294.
  7. Husin, 2007, Analisis Serat Bagas, http://www.free.vlsm.org/, diakses 20 juli 2021
  8. Keshwani, D.R. 2009. Microwave Pretreatment of Switchgrass for Bioethanol Production. Dissertation. Graduate Faculty of North Carolina State University, Raleigh, North Carolina. 219 pp.
  9. Legiso., Kulsum, U. 2018. Pembuatan Pulp Ampas Tebu Proses Bleaching Hidrogen Peroksida. Universitas Muhammadiyah Palembang.
  10. Ma, X., Chang, P. R. and Yu, J., 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohydrate Polymers, 72(3), pp. 369–375.
  11. Nufus, K., Rahmayetty.,Yudo, E. 2018. Pengaruh Penambahan Fecl3 Dan Al2o3 Terhadap Kadar Lignin Pada Delignifikasi Tongkol Jagung Dengan Pelarut Naoh Menggunakan Bantuan Gelombang Ultrasonik. jurnal.umj.ac.id/index.php/semnastek. Universitas Sultan Ageng Tirtayasa
  12. Ooshima, H., K. Aso, Y. Harano, and T. Yamamoto. 1984. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol. Lett. 6 (5): 289-294.
  13. Pamilia,Coniwanti, Linda Laila, Mardiyah Rizka Alfira. 2015. Pembuatan Film Plastik Biodegredabel Dari Pati Jagung Dengan Penambahan Kitosan Dan Pemplastis Gliserol. Sumatera Selatan: Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya
  14. Sen G, Mishra S, Rani GU, Rani P, Prasad R. 2012. Microwave initiated synthesis of polyacrylamide grafted psyllium and its application as flocculant. Int Jour Biol Macromol 50:369-375.
  15. Thoorens, Gregory et al. 2014. “Microcrystalline Cellulose , a Direct Compression Binder in a Quality by Design Environment — A Review.” International Journal of Pharmaceutics 473(1–2): 64–72. http://dx.doi.org/ 10.1016/j.ijpharm.2014.06.055.
  16. Zhang M, Qi W, Liu R, Su R, Wu S, He Z. 2010. Fractionating lignocellulose by formic acid: characterization of major components. Biomass and Bioen. 34: 525-532.