Main Article Content

Abstract

Rice straw is the stem and stalk of the rice plant after the rice grains are harvested. Rice straw is the largest agricultural waste that has not been utilized due to technical and economic factors. The high cellulose content in rice straw can be used in various ways, including as a substitute for wood, namely raw materials for making pulp, tissues, handicrafts or very strong ropes. In addition, rice straw waste is environmentally friendly. One of the stages in the biomass fractionation process is the delignification/pulping process. The method used for rice straw delignification is MAE (Microwave Assisted Extraction). MAE has several advantages including shorter extraction time, higher accuracy and precision, higher yield, lower energy, and solvent consumption. This study aims to find the optimum conditions for the delignification process of rice straw waste with microwave-assisted hydrotropic solvents. The process parameters studied include time (30-150 minutes) and differences in solvent addition. The results of the analysis showed that rice straw contains cellulose content of 35.59%, lignin content of 25.39%, and extractive content of 4.53%. The delignification process using microwave heating with a power of 180W, for 150 minutes and the addition of hydrogen peroxide produced a cellulose content of 53.34% and a lignin content of 21.46%.

Keywords

Rice Straw Delignification Microwave

Article Details

References

  1. Dewi. 2002. Hidrolisis Limbah Hasil Pertanian Secara Enzimatik. J. Akta Agrosia. 5(2):67-71.
  2. Fengel, D., dan Wegener, G., 1995, Kayu Kimia, Ultrastruktur, Reaksi – Reaksi, Translated from the English by H.Satrohamidjojo, Gajah Mada University Press, Yogyakarta.
  3. Hidayat, M. R. 2013. Bahan lignoselulosa dalam proses produksi bioetanol. Biopropal Industri, 4, 33-48.
  4. Isroi.13 Februari 2008. “Potensi Bioethanol dari Biomassa Lignoselulosa”. (Online).(http://isroi.wordpress.com/2008/02/13/potensi-bioethanol-dai-biomassa-lignoselulosa/,diakses 10 Juli 2019).
  5. Komar, A. 1984. Teknologi Pengolahan Jerami Padi Sebagai Pakan Ternak. Bandung: Dian Grahita.
  6. Postlewaite, J., Taraban. L., 2015. Hidrogen Peroxide Stability For Shelf-Life Determination. Technotes Texwipe.
  7. Pratiwi, Rimadan., Dwiyanti Rahayu, dan Melisa I. Barliana. 2016. Pemanfaatan Selulosa dari Limnah Jerami Padi (Oryza sativa) sebagai Bahan Bioplastik, Jurnal IJPST, Vol. 3, Oktober 2016.
  8. Purwanto H, Hartati I, Kurniasari L.,2010, Pengembangan Microwave Assisted Extractor (MAE) Pada Produksi Minyak Jahe Dengan Kadar Zingiberene Tinggi, Momentum 6(2):9-16.
  9. Reddy, N.&Yang,Y.2005.Biofibers From Agricultural Byproducts for Industrial Applications. Trend Biotechnology.23(1),22-27.
  10. Rizal S, Jalaluddin.2005.Pembuatan Pulp Dari Jerami Padi Dengan Menggunakan Natrium Hidroksida. Jurnal Industi Volume 6.
  11. Rowe, R. C., Paul J. S., dan Marian E. Q., 2009, Handbook of Pharmaceutical Excipients Sixth Edition, Pharmaceutical Press and American Pharmacists Association: 129.
  12. Ratnani, D. R., Hartati, I., Kurniasari, L.,2012, “Potensi Produk Andrographolide dari Sambiloto (Andrographis Paniculata Ness) Melalui Proses Ekstraksi Hidrotopi” Majalah Ilmiah Fakultas Teknik Universitas Wahid Hasyim Semarang, Momentum Vol 8, april 2012.
  13. Siregar, Yohana. 2015. Pre-Treatment Jerami Padi Menggunakan Proses Organosolv dengan Variasi Konsentrasi Pelarut (CH3OH) dan Waktu Pemasakan. Jurusan Teknik Kimia. Universitas Riau.
  14. Yulianingsih, H. 2010. Hidrolisis Jerami Padi dengan Asam Sulfat Menjadi Glukosa Sebagai Bahan Baku Bioethanol Pengganti Bahan Bakar Minyak.(Skripsi). Teknologi Hasil Pertanian. Universitas Lampung. Bandar Lampung.