Kajian Rute Alternatif Pemberian Liraglutide dalam Penanganan Diabetes dan Obesitas

Handika Immanuel

Abstract


Liraglutide adalah sebuah obat peptida yang digunakan untuk menangani diabetes tipe 2 dan obesitas. Liraglutide diberikan secara injeksi subkutan setiap harinya. Rute injeksi subkutan dapat menyebabkan rasa sakit dan ketidaknyamanan bagi beberapa pasien. Oleh sebab itu, penting untuk meninjau keefektifan dan keamanan rute alternatif ini untuk memastikan bahwa pasien memiliki akses ke pilihan pengobatan yang paling tepat dan nyaman. Rute pemberian alternatif seperti oral dan subkutan yang diperlama pelepasan obatnya, serta topikal, mulai dikembangkan. Artikel review deskriptif ini dibuat dengan metode penelaahan pustaka menggunakan kriteria inklusi dan eksklusi. Beberapa penelitian telah dilakukan untuk mengevaluasi efikasi dan keamanan liraglutide yang diberikan melalui rute alternatif seperti oral dan topikal. Liraglutide yang diberikan melalui rute oral menggunakan teknologi enkapsulasi telah menunjukkan manfaat yang serupa dengan liraglutide yang diberikan melalui injeksi subkutan, ditandai dengan adanya penurunan kadar glukosa darah serta penurunan berat badan yang sebanding. Pemberian liraglutide yang telah dienkapsulasikan melalui injeksi subkutan juga telah diketahui dapat memberikan durasi efek farmakologis yang lebih panjang, sehingga meminimalkan frekuensi pemakaian liraglutide.


Keywords


GLP-1; Liraglutide; Sistem penghantaran obat

Full Text:

PDF

References


Abbas, A., 2021. View of Meta Analysis of the Relationship of Obesity with Type 2 Diabetes Mellitus in Indonesia. Str. J. Ilm. Kesehat.

Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K., 2013. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. https://doi.org/10.1186/1556-276X-8-102

Chen, G., Kang, W., Li, W., Chen, S., Gao, Y., 2022. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics. https://doi.org/10.7150/thno.61747

Chen, Y., Luan, J., Shen, W., Lei, K., Yu, L., Ding, J., 2016. Injectable and Thermosensitive Hydrogel Containing Liraglutide as a Long-Acting Antidiabetic System. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.6b09415

Ding, R., Zhao, Z., He, J., Tao, Y., Zhang, H., Yuan, R., Sun, K., Shi, Y., 2023. Preparation, Drug Distribution, and In Vivo Evaluation of the Safety of Protein Corona Liposomes for Liraglutide Delivery. Nanomaterials 13. https://doi.org/10.3390/nano13030540

Drucker, D.J., 2018. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 27, 740–756. https://doi.org/10.1016/j.cmet.2018.03.001

Federation, I.D., 2021. IDF Diabetes Atlas Tenth edition 2021 [WWW Document]. Int. Diabetes Fed.

Hirenkumar, M., Steven, S., 2012. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). https://doi.org/10.3390/polym3031377.Poly

Icart, L.P., Souza, F.G. de, Lima, L.M.T.R., 2019. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J. Microencapsul. 36, 747–758. https://doi.org/10.1080/02652048.2019.1677795

Ismail, R., Bocsik, A., Katona, G., Gróf, I., Deli, M.A., Csóka, I., 2019. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the glp-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics 11, 1–13. https://doi.org/10.3390/pharmaceutics11110599

Janardhan, S., Sastry, G., 2014. Dipeptidyl Peptidase IV Inhibitors: A New Paradigm in Type 2 Diabetes Treatment. Curr. Drug Targets. https://doi.org/10.2174/1389450115666140311102638

Jin, Y., Song, Y., Zhu, X., Zhou, D., Chen, C., Zhang, Z., Huang, Y., 2012. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33, 1573–1582. https://doi.org/10.1016/j.biomaterials.2011.10.075

Juhng, S., Song, J., You, J., Park, J., Yang, H., Jang, M., Kang, G., Shin, J., Ko, H.W., Jung, H., 2023. Fabrication of liraglutide-encapsulated triple layer hyaluronic acid microneedles (TLMs) for the treatment of obesity. Lab Chip. https://doi.org/10.1039/d2lc01084d

Larsen, P.J., 2008. Mechanisms behind GLP-1 induced weight loss. Br. J. Diabetes Vasc. Dis. 8, S34–S41. https://doi.org/10.1177/1474651408100525

Lear, S., Amso, Z., Shen, W., 2019. Engineering PEG-fatty acid stapled, long-acting peptide agonists for G protein-coupled receptors, in: Methods in Enzymology. https://doi.org/10.1016/bs.mie.2019.02.008

Liang, Y., Ding, R., Wang, H., Liu, L., He, J., Tao, Y., Zhao, Z., Zhang, J., Wang, A., Sun, K., Li, Y., Shi, Y., 2022. Orally administered intelligent self-ablating nanoparticles: a new approach to improve drug cellular uptake and intestinal absorption. Drug Deliv. https://doi.org/10.1080/10717544.2021.2023704

Lundgren, J.R., Janus, C., Jensen, S.B.K., Juhl, C.R., Olsen, L.M., Christensen, R.M., Svane, M.S., Bandholm, T., Bojsen-Møller, K.N., Blond, M.B., Jensen, J.-E.B., Stallknecht, B.M., Holst, J.J., Madsbad, S., Torekov, S.S., 2021. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N. Engl. J. Med. https://doi.org/10.1056/nejmoa2028198

Mezil, S.A., 2021. Complication of Diabetes Mellitus Complication of Diabetes Mellitus. Ann. Rom. Soc. Cell Biol.

Müller, T.D., Finan, B., Bloom, S.R., D’Alessio, D., Drucker, D.J., Flatt, P.R., Fritsche, A., Gribble, F., Grill, H.J., Habener, J.F., Holst, J.J., Langhans, W., Meier, J.J., Nauck, M.A., Perez-Tilve, D., Pocai, A., Reimann, F., Sandoval, D.A., Schwartz, T.W., Seeley, R.J., Stemmer, K., Tang-Christensen, M., Woods, S.C., DiMarchi, R.D., Tschöp, M.H., 2019. Glucagon-like peptide 1 (GLP-1). Mol. Metab. https://doi.org/10.1016/j.molmet.2019.09.010

Muscogiuri, G., Cignarelli, A., Giorgino, F., Prodram, F., Santi, D., Tirabassi, G., Balercia, G., Modica, R., Faggiano, A., Colao, A., 2014. GLP-1: Benefits beyond pancreas. J. Endocrinol. Invest. https://doi.org/10.1007/s40618-014-0137-y

Nauck, M.A., 2011. Incretin-based therapies for type 2 diabetes mellitus: Properties, functions, and clinical implications. Am. J. Med. https://doi.org/10.1016/j.amjmed.2010.11.002

O’Mahony, A.M., Godinho, B.M.D.C., Ogier, J., Devocelle, M., Darcy, R., Cryan, J.F., O’Driscoll, C.M., 2012. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem. Neurosci. https://doi.org/10.1021/cn3000372

Peterson, G.E., Pollom, R.D., 2010. Liraglutide in clinical practice: Dosing, safety and efficacy. Int. J. Clin. Pract. https://doi.org/10.1111/j.1742-1241.2010.02498.x

Presas, E., Tovar, S., Cuñarro, J., O’Shea, J.P., O’Driscoll, C.M., 2021. Pre-Clinical Evaluation of a Modified Cyclodextrin-Based Nanoparticle for Intestinal Delivery of Liraglutide. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2020.10.058

Rabiei, M., Kashanian, S., Bahrami, G., Derakhshankhah, H., Barzegari, E., Samavati, S.S., McInnes, S.J.P., 2021. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur. J. Pharm. Sci. 167, 106040. https://doi.org/10.1016/j.ejps.2021.106040

Shamekhi, F., Tamjid, E., Khajeh, K., 2018. Development of chitosan coated calcium-alginate nanocapsules for oral delivery of liraglutide to diabetic patients. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.08.078

Shi, Y., Yin, M., Song, Y., Wang, T., Guo, S., Zhang, X., Sun, K., Li, Y., 2021. Oral delivery of liraglutide-loaded Poly-N-(2-hydroxypropyl) methacrylamide/chitosan nanoparticles: Preparation, characterization, and pharmacokinetics. J. Biomater. Appl. https://doi.org/10.1177/0885328220947889

Shrestha, N., Bouttefeux, O., Vanvarenberg, K., Lundquist, P., Cunarro, J., Tovar, S., Khodus, G., Andersson, E., Keita, Å. V., Gonzalez Dieguez, C., Artursson, P., Préat, V., Beloqui, A., 2018. The stimulation of GLP-1 secretion and delivery of GLP-1 agonists: Via nanostructured lipid carriers. Nanoscale. https://doi.org/10.1039/c7nr07736j

St Clair-Jones, A., Prignano, F., Goncalves, J., Paul, M., Sewerin, P., 2020. Understanding and Minimising Injection-Site Pain Following Subcutaneous Administration of Biologics: A Narrative Review. Rheumatol. Ther. https://doi.org/10.1007/s40744-020-00245-0

Sung, H.W., Sonaje, K., Liao, Z.X., Hsu, L.W., Chuang, E.Y., 2012. PH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc. Chem. Res. https://doi.org/10.1021/ar200234q

Wang, J., Yadav, V., Smart, A.L., Tajiri, S., Basit, A.W., 2015. Toward oral delivery of biopharmaceuticals: An assessment of the gastrointestinal stability of 17 peptide drugs. Mol. Pharm. https://doi.org/10.1021/mp500809f

Wang, X., Guo, Y., Qiu, L., Wang, X., Li, T., Han, L., Ouyang, H., Xu, W., Chu, K., 2019. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2018.10.096

World Health Organization: WHO and World Health Organization: WHO (2023) “Diabetes,” www.who.int [Preprint]. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes#:~:text=The%20number%20of%20people%20with,stroke%20and%20lower%20limb%20amputation.

Wu, J., Williams, G.R., Branford-White, C., Li, H., Li, Y., Zhu, L.M., 2016. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur. J. Pharm. Sci. https://doi.org/10.1016/j.ejps.2016.06.018

Wu, R., Wu, Z., Xing, L., Liu, X., Wu, L., Zhou, Z., Li, L., Huang, Y., 2022. Mimicking natural cholesterol assimilation to elevate the oral delivery of liraglutide for type II diabetes therapy. Asian J. Pharm. Sci. https://doi.org/10.1016/j.ajps.2022.08.002

Xu, Y., Zheng, Y., Wu, L., Zhu, X., Zhang, Z., Huang, Y., 2018. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.8b00507

Yin, M., Song, Y., Guo, S., Zhang, X., Sun, K., Sun, K., Li, Y., Li, Y., Shi, Y., 2020. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol. Pharm. https://doi.org/10.1021/acs.molpharmaceut.9b01307

You, J., Juhng, S., Song, J., Park, J., Jang, M., Kang, G., Yang, H., Min, H.S., Shin, J., Lee, S., Ko, H.W., Jung, H., 2023. Egg Microneedle for Transdermal Delivery of Active Liraglutide. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202202473

Zhang, L., Ding, L., Tang, C., Li, Y., Yang, L., 2016. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv. https://doi.org/10.1080/10717544.2016.1180723

Ziebarth, J., Mainardes, R.M., 2023. Preparation, characterization and in vitro evaluation of chitosan nanoparticles for the oral delivery of GLP-1 analog liraglutide. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-022-11909-0




DOI: http://dx.doi.org/10.31942/jiffk.v20i2.9299

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Handika Handika Immanuel Immanuel

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXED BY :

 Google Scholar   Google Scholar Road Google Scholar Google Scholar Sinta


Alamat kami di :

Fakultas Farmasi Universitas Wahid Hasyim

Jl. Raya Manyaran-Gunungpati, Nongkosawit, Kec. Gn. Pati, Kota Semarang, Jawa Tengah 50224, Indonesia
Handphone: +62812-2946-5952
Email: jiffk@unwahas.ac.id

 

 
 

Visitor JIFFK Unwahas