Deciphering the Molecular Basis of Mutated Binding Site Bromodomain-Ligand Complexes: Insights from Molecular Dynamics Simulations and Decoded Interaction Fingerprint Analysis

Fransiscus Deddy Riandono


This study aims to predict structural stability changes and to identify the molecular determinants of ligand-bromodomain complex interactions that undergo mutations in the ligand binding site (LBS) using computational chemistry methods. The stability changes of the complexes were investigated using Molecular Dynamics (MD) simulations during a 25 ns production run. The identification of molecular interaction determinants was performed by decoding the interaction fingerprint, utilizing the output of trajectory data of the MD simulations, which were converted into a series of pdb files along the time step. The system preparations were done using CHARMM-GUI. The MD simulations were carried out using the GROMACS program. Protein-ligand interaction fingerprints (PLIF) were identified using the PyPLIF-HIPPOS program. This study successfully predicted the stability of both wild-type and mutated ligand-bromodomain complex structures, where the W81A mutation led to a decrease in complex stability. The key residues and non-hydrophobic interaction types responsible for the stabilities were identified as TRP81 aromatic edge-to-face, TYR139 aromatic edge-to-face, and TYR139 aromatic face-to-face.


Bromodomain; Molecular Dynamics Simulations; Protein-Ligand Interaction Fingerprint; GROMACS; PyPLIF-HIPPOS

Full Text:



Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.

Ammar, A., Cavill, R., Evelo, C., & Willighagen, E. (2022). PSnpBind: a database of mutated binding site protein–ligand complexes constructed using a multithreaded virtual screening workflow. Journal of Cheminformatics, 14(1), 1–16.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.

Bosserman, M. A., Downey, T., Noinaj, N., Buchanan, S. K., & Rohr, J. (2013). Molecular Insight into Substrate Recognition and Catalysis of Baeyer–Villiger Monooxygenase MtmOIV, the Key Frame Modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin. ACS Chemical Biology, 8(11), 2466–2477.

Boyson, S. P., Gao, C., Quinn, K., Boyd, J., Paculova, H., Frietze, S., & Glass, K. C. (2021). Functional roles of bromodomain proteins in cancer. Cancers, 13(14).

Brand, L. J., & Dehm, S. M. (2013). Androgen Receptor Gene Rearrangements: New Perspectives on Prostate Cancer Progression. Current Drug Targets, 14(4), 441.

Cochran, A. G., Conery, A. R., & Sims, R. J. (2019). Bromodomains: a new target class for drug development. Nature Reviews Drug Discovery 2019 18:8, 18(8), 609–628.

Istyastono, E. P., Radifar, M., Yuniarti, N., Prasasty, V. D., & Mungkasi, S. (2020). PyPLIF HIPPOS: A Molecular Interaction Fingerprinting Tool for Docking Results of AutoDock Vina and PLANTS. Journal of Chemical Information and Modeling, 60(8), 3697–3702.

Istyastono, E. P., & Riswanto, F. D. O. (2022). Molecular Dynamics Simulations of The Caffeic Acid Interactions to Dipeptidyl Peptidase IV. International Journal of Applied Pharmaceutics, 274–278.

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865.

Jung, M., Philpott, M., Müller, S., Schulze, J., Badock, V., Eberspächer, U., Moosmayer, D., Bader, B., Schmees, N., Fernández-Montalván, A., & Haendler, B. (2014). Affinity Map of Bromodomain Protein 4 (BRD4) Interactions with the Histone H4 Tail and the Small Molecule Inhibitor JQ1. The Journal of Biological Chemistry, 289(13), 9304.

Kim, P., Zhao, J., Lu, P., & Zhao, Z. (2017). mutLBSgeneDB: mutated ligand binding site gene DataBase. Nucleic Acids Research, 45(Database issue), D256.

Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 12(1), 405–413.

Lee, J., Hitzenberger, M., Rieger, M., Kern, N. R., Zacharias, M., & Im, W. (2020). CHARMM-GUI supports the Amber force fields. The Journal of Chemical Physics, 153(3), 035103.

McKeown, M. R., Shaw, D. L., Fu, H., Liu, S., Xu, X., Marineau, J. J., Huang, Y., Zhang, X., Buckley, D. L., Kadam, A., Zhang, Z., Blacklow, S. C., Qi, J., Zhang, W., & Bradner, J. E. (2014). Biased multicomponent reactions to develop novel bromodomain inhibitors. Journal of Medicinal Chemistry, 57(21), 9019–9027.

Muller, S., Filippakopoulos, P., & Knapp, S. (2011). Bromodomains as therapeutic targets. Expert Reviews in Molecular Medicine, 13, e29.

Sandy, J., Holton, S., Fullam, E., Sim, E., & Noble, M. (2005). Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis. Protein Science : A Publication of the Protein Society, 14(3), 775.

Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S. T., Abeysinghe, S., Krawczak, M., & Cooper, D. N. (2003). Human Gene Mutation Database (HGMD): 2003 update. Human Mutation, 21(6), 577–581.

Taniguchi, Y. (2016). The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. International Journal of Molecular Sciences, 17(11).

Yu, Y., Wang, J., Shao, Q., Shi, J., & Zhu, W. (2015). Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Scientific Reports 2015 5:1, 5(1), 1–14.

Zaware, N., & Zhou, M. M. (2019). Bromodomain biology and drug discovery. Nature Structural and Molecular Biology, 26(10), 870–879.

Zhao, J., Cao, Y., & Zhang, L. (2020). Exploring the computational methods for protein-ligand binding site prediction. Computational and Structural Biotechnology Journal, 18, 417.



  • There are currently no refbacks.

Copyright (c) 2023 Fransiscus Deddy Riandono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 Google Scholar   Google Scholar Road Google Scholar Google Scholar Sinta

Alamat kami di :

Fakultas Farmasi Universitas Wahid Hasyim

Jl. Raya Manyaran-Gunungpati, Nongkosawit, Kec. Gn. Pati, Kota Semarang, Jawa Tengah 50224, Indonesia
Handphone: +62812-2946-5952



Visitor JIFFK Unwahas