Main Article Content

Abstract

This systematic review synthesizes empirical evidence from 2015-2025 on the impacts of Climate-Smart Agriculture (CSA) adoption on farm performance. While CSA is promoted to raise productivity, strengthen resilience, and reduce emissions at the farm level, empirical findings remain fragmented and performance indicators are not yet standardized. This review systematically assesses effects during 2015-2025 on a core set of farm-level indicators yield (t ha⁻¹), cost (USD PPP ha⁻¹), margin/return on investment (ROI), income volatility, resilience, and environmental outcomes distinguishing single practices from bundled packages in the context of Indonesia and the broader ASEAN region. We searched Scopus, Web of Science, ScienceDirect, SpringerLink, and Google Scholar (2015-2025), normalized data to common units (t ha⁻¹, USD PPP ha⁻¹, CO₂e ha⁻¹), and conducted an analytical-comparative synthesis. Water-efficiency practices (e.g., alternate wetting and drying/AWD) generally maintained or increased yields, lowered water/energy costs, and curtailed CH₄ emissions. Multi-season field studies reported ~21-73% reductions in CH₄ and ~26-29% declines in global warming potential (GWP), contingent on adequate nitrogen management. Conservation agriculture improved soil health and medium-term profitability. Moreover, bundled practice packages (e.g., water-nitrogen-advisory) more consistently delivered multidimensional benefits than single practices. Heterogeneity is driven primarily by agroecology, asset and service access, and commodity (predominantly rice), warranting caution when generalizing to non-rice systems. Overall, evidence from 2015-2025 supports scaling CSA packages in tandem with lightweight measurement, reporting, and verification (MRV) based on standardized farmer-level indicators to ensure that technical gains translate into measurable economic and environmental benefits.

Keywords

climate-smart agriculture, adoption, farm performance, productivity, resilience, GHG emissions asean productivity resilience GHG emissions climate‐smart agriculture, adopsi, kinerja usahatani, produktivitas, ketahanan, emisi GRK

Article Details

References

  1. Anuga, S. W., Chirinda, N., Nukpezah, D., Ahenkan, A., Andrieu, N., & Gordon, C. (2020). Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Current Research in Environmental Sustainability, 2, 100015.
  2. ASEAN. (2015). Regional guidance on Climate-Smart Agriculture (dokumen kebijakan).
  3. Badan Pusat Statistik (BPS). (2023). Statistik Lingkungan Hidup Indonesia 2023. Jakarta: BPS.
  4. Bhatnagar, S., Chaudhary, R., Sharma, S., Janjhua, Y., Thakur, P., Sharma, P., & Keprate, A. (2024). Exploring the dynamics of climate-smart agricultural practices for sustainable resilience in a changing climate. Environmental and Sustainability Indicators, 24, 100535.
  5. Finizola e Silva, M., Van Schoubroeck, S., Cools, J., & Van Passel, S. (2024). A systematic review identifying the drivers and barriers to the adoption of climate-smart agriculture by smallholder farmers in Africa. Frontiers in Environmental Economics, 3, 1356335.
  6. Gemtou, M., Kakkavou, K., Anastasiou, E., Fountas, S., Pedersen, S. M., Isakhanyan, G., ... & Pazos-Vidal, S. (2024). Farmers’ transition to climate-smart agriculture: a systematic review of the decision-making factors affecting adoption. Sustainability, 16(7), 2828.
  7. Gough, D., Oliver, S., & Thomas, J. (2012). An Introduction to Systematic Reviews. London: SAGE.
  8. Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health information & libraries journal, 26(2), 91-108.
  9. Knapp, S., & van der Heijden, M. G. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature communications, 9(1), 3632.
  10. Li, L., Huang, Z., Mu, Y., Song, S., Zhang, Y., Tao, Y., & Nie, L. (2024). Alternate wetting and drying maintains rice yield and reduces global warming potential: A global meta-analysis. Field Crops Research, 318, 109603.
  11. Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., & Branca, G. (2017). Climate smart agriculture: building resilience to climate change (p. 630). Springer Nature.
  12. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620.
  13. Lorenzetti, L. A., & Fiorini, A. (2024). Conservation agriculture impacts on economic profitability and environmental performance of agroecosystems. Environmental Management, 73(3), 532-545.
  14. Ma, W., & Rahut, D. B. (2024). Climate-smart agriculture: adoption, impacts, and implications for sustainable development. Mitigation and Adaptation Strategies for Global Change, 29(5), 44.
  15. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj, 339.
  16. Ogunyiola, A., Gardezi, M., & Vij, S. (2022). Smallholder farmers’ engagement with climate smart agriculture in Africa: role of local knowledge and upscaling. Climate Policy, 22(4), 411-426.
  17. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
  18. Pedersen, S. M., Erekalo, K. T., Christensen, T., Denver, S., Gemtou, M., Fountas, S., ... & Adrián, J. B. (2024). Drivers and barriers to climate-smart agricultural practices and technologies adoption: Insights from stakeholders of five European food supply chains. Smart Agricultural Technology, 8, 100478.
  19. Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., ... & Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365-368.
  20. Pusat Data dan Informasi Pertanian (Pusdatin). (2022). Outlook Komoditas Padi 2022. Jakarta: Kementerian Pertanian RI.
  21. Retnaningtyas, T. A., Padmaningrum, D., & Anantanyu, S. (2024). Perilaku Petani Milenial Provinsi Jawa Barat dalam Penerapan Climate-Smart Agriculture (CSA) pada Tanaman Hortikultura. Jurnal Ilmiah Membangun Desa dan Pertanian, 9(2), 160-171.
  22. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339.
  23. Teng, J., Hou, R., Dungait, J. A., Zhou, G., Kuzyakov, Y., Zhang, J., ... & Delgado-Baquerizo, M. (2024). Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nature communications, 15(1), 8785.
  24. World Bank. (2021). Climate-Smart Agriculture in Indonesia (CSA Country Profile). Washington, DC: The World Bank. (Profil negara yang memetakan risiko iklim, hambatan adopsi, serta entry points investasi CSA).
  25. World Bank. (2021). Climate-Smart Agriculture indicators & country profiles (laporan kebijakan).
  26. Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). Thousand Oaks, CA: SAGE.
  27. Zhao, C., Qiu, R., Zhang, T., Luo, Y., & Agathokleous, E. (2024). Effects of Alternate Wetting and Drying Irrigation on Methane and Nitrous Oxide Emissions From Rice Fields: A Meta‐Analysis. Global Change Biology, 30(12), e17581.
  28. Zheng, H., Ma, W., & He, Q. (2024). Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review. Mitigation and Adaptation Strategies for Global Change, 29(4), 28.